找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Computational Modeling for Drug Discovery; Supratik Kar,Jerzy Leszczynski Book 2023 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
樓主: 口語
41#
發(fā)表于 2025-3-28 17:06:01 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9gical and pathological disease conditions. HDAC6 and HDAC10 are involved in different signaling pathways associated with several neurological disorders, various cancers at early as well as advanced stages, rare diseases, immunological conditions, etc. Thus, targeting these two enzymes has been found
42#
發(fā)表于 2025-3-28 19:18:42 | 只看該作者
43#
發(fā)表于 2025-3-29 00:37:49 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9antiviral drugs for treatment. Since the 1950s, new viral illnesses including AIDS, Hepatitis, and coronavirus infections like SARS, MERS, and COVID-19 have periodically emerged, posing a challenge to the development of antiviral drugs. The creation of computer models is an interactive, iterative pr
44#
發(fā)表于 2025-3-29 05:50:09 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9igh fatality rate. With time, the world has faced numerous outbreaks in various regions such as Malaysia, Bangladesh, Philippines, and India. In this chapter, we have summarized experimentally tested antivirals and computational approaches to predict potential inhibitors against NiV. Various studies
45#
發(fā)表于 2025-3-29 10:12:18 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9nti-HIV drugs remains a major cause of concern, necessitating a regimen of highly active antiretroviral therapy (HAART), which consists of a combination of multiple drugs for long-term clinical benefit. Clearly, the rapid development of novel molecules that can help change the present regimen to new
46#
發(fā)表于 2025-3-29 15:08:18 | 只看該作者
47#
發(fā)表于 2025-3-29 16:43:02 | 只看該作者
48#
發(fā)表于 2025-3-29 21:28:56 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9pects like reproducibility, less ethical complications, no animal use and reduced time are some of the reasons why?researchers nowadays are shifting toward the in silico approaches for prediction. Quantitative Structure–Activity Relationship (QSAR) is one of the most commonly used in silico approach
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
施甸县| 青田县| 萍乡市| 上虞市| 平乐县| 滕州市| 古田县| 沙雅县| 手机| 武安市| 丹巴县| 河津市| 百色市| 繁峙县| 阳春市| 高碑店市| 佛冈县| 手游| 玉山县| 镇安县| 德清县| 电白县| 乐都县| 达日县| 长汀县| 肇庆市| 文化| 武义县| 射洪县| 建宁县| 安义县| 富阳市| 吉安县| 墨玉县| 虞城县| 忻城县| 板桥市| 宝清县| 惠东县| 滕州市| 密山市|