找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Topics in Quantitative Finance; Elio Canestrelli Conference proceedings 1999 Springer-Verlag Berlin Heidelberg 1999 Analysis.Asset

[復(fù)制鏈接]
樓主: 多話
31#
發(fā)表于 2025-3-26 21:17:20 | 只看該作者
G. Michelson,U. Sch?nherr,G. O. H. Naumannach scenario, conditioned to the last sampled data. This non parametric approach seems to be quite appealing for a real financial market portfolio management in conjunction with stochastic optimization. The proposed algorithm was then applied to the scenario forecasting of the COMIT index in the Italian Stock Market.
32#
發(fā)表于 2025-3-27 03:29:35 | 只看該作者
33#
發(fā)表于 2025-3-27 05:27:39 | 只看該作者
34#
發(fā)表于 2025-3-27 09:47:55 | 只看該作者
W. F?rster,H. Kasprzak,G. von Bally,H. BusseBertocchi (1997) with respect to lattice calibration, we compare Bjerksund and Stensland approximation algorithm, Kang Pan-Zenios algorithm and a modified Kang Pan-Zenios algorithm to generate short-rate interest rates tree according to Black-Derman-Toy model. Numerical testing of the behaviour of t
35#
發(fā)表于 2025-3-27 16:57:42 | 只看該作者
36#
發(fā)表于 2025-3-27 18:43:01 | 只看該作者
G. Michelson,U. Sch?nherr,G. O. H. Naumannach scenario, conditioned to the last sampled data. This non parametric approach seems to be quite appealing for a real financial market portfolio management in conjunction with stochastic optimization. The proposed algorithm was then applied to the scenario forecasting of the COMIT index in the Ita
37#
發(fā)表于 2025-3-28 01:12:12 | 只看該作者
U. Reinking,D. Micka,E.-S. El-Hifnawiis detectable significative empirical evidence that there are dependence inside such returns. From a distributional point of view, this dependence can be modelled by the so-called.Brownian (fB) motion which is a Gaussian stochastic process whose increments are (long-term) dependent with each other.
38#
發(fā)表于 2025-3-28 02:21:58 | 只看該作者
39#
發(fā)表于 2025-3-28 09:52:20 | 只看該作者
40#
發(fā)表于 2025-3-28 13:59:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 08:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永城市| 石家庄市| 新津县| 天镇县| 高尔夫| 嘉兴市| 锦屏县| 仙桃市| 驻马店市| 裕民县| 丰镇市| 苏尼特左旗| 新泰市| 建平县| 南靖县| 土默特右旗| 金湖县| 宜兰县| 青川县| 句容市| 阿拉善盟| 德昌县| 江西省| 南和县| 香格里拉县| 南乐县| 三江| 襄樊市| 奈曼旗| 边坝县| 枞阳县| 清水河县| 金溪县| 岐山县| 关岭| 博湖县| 右玉县| 洪江市| 江口县| 娱乐| 岱山县|