找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cubic Fields with Geometry; Samuel A. Hambleton,Hugh C. Williams Book 2018 Springer Nature Switzerland AG 2018 binary cubic forms.cubic fi

[復制鏈接]
樓主: 里程表
31#
發(fā)表于 2025-3-27 00:33:17 | 只看該作者
Cubic Pell Equations,is chapter, we derive several Diophantine equations associated with a cubic field, investigate relationships between them, derive their group laws, briefly discuss points modulo a prime, and consider naive algorithms for solving some of these Diophantine equations.
32#
發(fā)表于 2025-3-27 04:23:56 | 只看該作者
,Voronoi’s Theory of Continued Fractions,ermination of the fundamental unit of a cubic field of negative discriminant or of a fundamental pair of units of a cubic field of positive discriminant. These problems reduce to the task of finding a particular relative minimum adjacent to 1 in a reduced lattice which we will discuss in the next chapter.
33#
發(fā)表于 2025-3-27 07:17:29 | 只看該作者
Cubic Fields,e of arithmetic in these structures. We also discuss the various types of cubic fields and the properties of the units and regulator. We conclude with a collection of results concerning the development of the simple continued fraction of a cubic irrationality.
34#
發(fā)表于 2025-3-27 10:16:13 | 只看該作者
Relative Minima Adjacent to 1 in a Reduced Lattice,in various parts of the overall algorithm. We present an algorithm for finding a reduced lattice similar to a given one, and conclude with some useful connections between prepared bases and binary cubic forms.
35#
發(fā)表于 2025-3-27 16:19:42 | 只看該作者
Parametrization of Norm 1 Elements of ,, discuss this work with very little of the language or tools of algebraic geometry, with the exception of some projective geometry. We also discuss conics and singular elliptic curves as they are significantly easier to parameterize.
36#
發(fā)表于 2025-3-27 20:51:35 | 只看該作者
Cubic Ideals and Lattices, any non-zero ideal of . can be represented uniquely as the product of prime ideals. We conclude with a review of the analytic class number formula and exhibit several results relating the class number of the cubic field to its regulator.
37#
發(fā)表于 2025-3-27 22:41:39 | 只看該作者
‘Anglo-America’ and Atlantic Europee of arithmetic in these structures. We also discuss the various types of cubic fields and the properties of the units and regulator. We conclude with a collection of results concerning the development of the simple continued fraction of a cubic irrationality.
38#
發(fā)表于 2025-3-28 03:08:04 | 只看該作者
39#
發(fā)表于 2025-3-28 07:22:07 | 只看該作者
40#
發(fā)表于 2025-3-28 12:53:38 | 只看該作者
David Courpasson,Jean-Claude Thoenign of Shanks’ method due toFung found generating polynomials of all 364 cubic fields with a 19-digit discriminant. This chapter presents the never before published Shanks-Fung algorithm and, for completeness, concludes with a brief summary ofBelabas’ fast technique for tabulating all cubic fields of bounded discriminant.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 17:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灌南县| 无为县| 永胜县| 罗源县| 曲靖市| 克拉玛依市| 八宿县| 镇赉县| 蒲江县| 洪江市| 遵义县| 扎囊县| 云梦县| 庆元县| 尖扎县| 天全县| 公安县| 威海市| 铁岭县| 天全县| 千阳县| 梧州市| 泰兴市| 开封市| 牙克石市| 南木林县| 车致| 都昌县| 手机| 阳泉市| 綦江县| 中牟县| 通渭县| 曲沃县| 永定县| 息烽县| 江阴市| 汕尾市| 刚察县| 阳高县| 彩票|