找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cubic Fields with Geometry; Samuel A. Hambleton,Hugh C. Williams Book 2018 Springer Nature Switzerland AG 2018 binary cubic forms.cubic fi

[復(fù)制鏈接]
樓主: 里程表
21#
發(fā)表于 2025-3-25 07:05:56 | 只看該作者
22#
發(fā)表于 2025-3-25 10:43:30 | 只看該作者
23#
發(fā)表于 2025-3-25 14:47:26 | 只看該作者
CMS Books in Mathematicshttp://image.papertrans.cn/d/image/240708.jpg
24#
發(fā)表于 2025-3-25 19:16:09 | 只看該作者
25#
發(fā)表于 2025-3-25 23:56:13 | 只看該作者
1613-5237 ls and disciplines which are applicable in the study of cubiThe objective of this book is to provide tools for solving problems which involve cubic number fields. Many such problems can be considered geometrically; both in terms of the geometry of numbers and geometry of the associated cubic Diophan
26#
發(fā)表于 2025-3-26 02:40:12 | 只看該作者
David Courpasson,Jean-Claude Thoenig any non-zero ideal of . can be represented uniquely as the product of prime ideals. We conclude with a review of the analytic class number formula and exhibit several results relating the class number of the cubic field to its regulator.
27#
發(fā)表于 2025-3-26 07:19:38 | 只看該作者
28#
發(fā)表于 2025-3-26 08:49:24 | 只看該作者
29#
發(fā)表于 2025-3-26 16:35:51 | 只看該作者
Introduction: Illuminating a Twilight Worldermination of the fundamental unit of a cubic field of negative discriminant or of a fundamental pair of units of a cubic field of positive discriminant. These problems reduce to the task of finding a particular relative minimum adjacent to 1 in a reduced lattice which we will discuss in the next chapter.
30#
發(fā)表于 2025-3-26 18:44:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 00:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武陟县| 安宁市| 姚安县| 兴业县| 珠海市| 忻州市| 安陆市| 上饶市| 桃江县| 临颍县| 介休市| 贵南县| 日土县| 新龙县| 古田县| 德惠市| 洛扎县| 平利县| 娱乐| 广汉市| 桑植县| 霍林郭勒市| 巴青县| 长葛市| 错那县| 武川县| 永顺县| 河源市| 长春市| 门源| 吉安市| 千阳县| 麻江县| 五原县| 丹巴县| 丁青县| 安塞县| 和平区| 进贤县| 博罗县| 河津市|