找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Crystallographic Texture and Group Representations; Chi-Sing Man Book 2023 Springer Nature B.V. 2023 Quantitative texture analysis.Orienta

[復(fù)制鏈接]
樓主: FETID
31#
發(fā)表于 2025-3-26 22:51:46 | 只看該作者
Tensor and Pseudotensor Representations of SO(3), O(3), and Their Finite Subgroups,Let . be the translation space of the three-dimensional physical space .3, and let . = . ×…×. (. copies).
32#
發(fā)表于 2025-3-27 01:39:45 | 只看該作者
33#
發(fā)表于 2025-3-27 06:51:31 | 只看該作者
tes, i.e., where .?=?{.} and .?=?{.}.. In Chap. . we follow Roe, who in his two seminal papers [270, 271] shows that the presence of non-trivial sample and/or crystallite symmetries leads to restrictions that the texture coefficients must satisfy.
34#
發(fā)表于 2025-3-27 12:45:38 | 只看該作者
tes, i.e., where .?=?{.} and .?=?{.}.. In Chap. . we follow Roe, who in his two seminal papers [270, 271] shows that the presence of non-trivial sample and/or crystallite symmetries leads to restrictions that the texture coefficients must satisfy.
35#
發(fā)表于 2025-3-27 16:45:17 | 只看該作者
36#
發(fā)表于 2025-3-27 19:54:31 | 只看該作者
Walled Towns during the Wars of Religionas a faithful representation. Recall that a representation . of . on complex vector space . is faithful if it is injective. Every matrix group . has a faithful representation as the selfrepresentation . is faithful. In this exposition we are concerned only with matrix groups such as SO(3), O(3), etc
37#
發(fā)表于 2025-3-28 01:06:11 | 只看該作者
38#
發(fā)表于 2025-3-28 06:02:23 | 只看該作者
Springer Nature B.V. 2023
39#
發(fā)表于 2025-3-28 09:48:28 | 只看該作者
40#
發(fā)表于 2025-3-28 11:56:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
班玛县| 林芝县| 房山区| 湖口县| 西畴县| 无极县| 井陉县| 扎兰屯市| 铜鼓县| 郯城县| 喀喇沁旗| 姜堰市| 象山县| 兴文县| 吉林省| 广丰县| 雷山县| 镇远县| 盐池县| 建湖县| 甘南县| 水城县| 罗定市| 丹东市| 安陆市| 秦安县| 南汇区| 略阳县| 营口市| 龙口市| 随州市| 怀集县| 湘阴县| 东平县| 云南省| 越西县| 遂平县| 调兵山市| 灌云县| 独山县| 河间市|