找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cryptography and Computational Number Theory; Kwok-Yan Lam,Igor Shparlinski,Chaoping Xing Conference proceedings 2001 Springer Basel AG 20

[復制鏈接]
樓主: PEL
31#
發(fā)表于 2025-3-27 00:51:45 | 只看該作者
32#
發(fā)表于 2025-3-27 03:23:16 | 只看該作者
Counting the Number of Points on Affine Diagonal CurvesEvans and Williams [1] is to express the number of points in terms of generalized Jacobi sums, then to relate the Jacobi sums .(..,..) to cyclotomic numbers. In this article we present the direct elementary method for the number of points on the affine curves .. + .. = . over finite fields in terms
33#
發(fā)表于 2025-3-27 08:32:32 | 只看該作者
34#
發(fā)表于 2025-3-27 10:13:18 | 只看該作者
35#
發(fā)表于 2025-3-27 14:33:05 | 只看該作者
36#
發(fā)表于 2025-3-27 20:02:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:52:50 | 只看該作者
Algorithms for Generating, Testing and Proving Primes: A Surveyf primality tests of theoretical or practical relevance, the focus is on criteria for practical use..We give a new model for sources producing prime numbers with biased distributions and use it for measuring the security of biases against unknown attacks (adapted solutions to the discrete logarithm
38#
發(fā)表于 2025-3-28 05:12:58 | 只看該作者
The Hermite-Serret Algorithm and 122 + 332uares, given (or having already found) a square root ., say, of -1 modulo n. In brief, one applies the Euclidean algorithm to n and ., stopping at the first pair . and . of remainders that are smaller than . Then, lo! it happens that . = .. + ... Naturally, square roots of -1 properly different from
39#
發(fā)表于 2025-3-28 09:42:34 | 只看該作者
40#
發(fā)表于 2025-3-28 12:18:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永年县| 林甸县| 廊坊市| 盐津县| 巨鹿县| 丹东市| 北安市| 福安市| 石家庄市| 赣州市| 乌鲁木齐市| 宁南县| 龙南县| 邢台县| 德化县| 英超| 新丰县| 资溪县| 太和县| 高雄县| 虎林市| 连江县| 澄江县| 蒲城县| 石景山区| 潼南县| 习水县| 东丽区| 宜都市| 松潘县| 峨眉山市| 澳门| 常德市| 曲阜市| 康马县| 阳原县| 陵川县| 同德县| 麦盖提县| 深水埗区| 本溪|