找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cryptography and Coding; 14th IMA Internation Martijn Stam Conference proceedings 2013 Springer-Verlag Berlin Heidelberg 2013 cloud cryptog

[復(fù)制鏈接]
樓主: 佯攻
51#
發(fā)表于 2025-3-30 11:04:02 | 只看該作者
Kin Chi Lau,Rafael Escobedo,David Barkine one-time public key by a standard signature. Second, we introduce a zero-knowledge variation on the Stern authentication scheme which permits to prove that one or two different syndromes are associated (or not) to the . low weight word. We give a polynomial reduction of the security of our scheme to the security of the syndrome decoding problem.
52#
發(fā)表于 2025-3-30 13:45:19 | 只看該作者
53#
發(fā)表于 2025-3-30 18:49:08 | 只看該作者
Reshma Yousuf,Zawiah Abdul Majidus methods have recommended, while still maintaining reasonable levels of security. As example applications we look at the evaluation of AES via FHE operations presented at Crypto 2012, and the parameters for the SHE variant of BGV used in the SPDZ protocol from Crypto 2012.
54#
發(fā)表于 2025-3-30 20:43:10 | 只看該作者
Semi-bent Functions from Oval Polynomialstwo areas are important from a theoretical point of view and for applications), the connections between finite geometry and cryptography remain little studied. In 2011, Carlet and Mesnager have showed that projective finite geometry can also be useful in constructing significant cryptographic primit
55#
發(fā)表于 2025-3-31 02:04:40 | 只看該作者
56#
發(fā)表于 2025-3-31 06:28:10 | 只看該作者
57#
發(fā)表于 2025-3-31 10:53:33 | 只看該作者
58#
發(fā)表于 2025-3-31 16:00:34 | 只看該作者
59#
發(fā)表于 2025-3-31 17:29:55 | 只看該作者
On Minimal and Quasi-minimal Linear Codesuch codes have applications in cryptography, e.g. to secret sharing. We here study minimal codes, give new bounds and properties and exhibit families of minimal linear codes. We also introduce and study the notion of quasi-minimal linear codes, which is a relaxation of the notion of minimal linear c
60#
發(fā)表于 2025-3-31 23:17:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
八宿县| 兴城市| 博湖县| 乐至县| 精河县| 汨罗市| 綦江县| 华阴市| 阿巴嘎旗| 盐山县| 察隅县| 韶关市| 永年县| 天全县| 巩义市| 当阳市| 台安县| 白玉县| 彭阳县| 区。| 疏附县| 青田县| 海林市| 安龙县| 象山县| 昌吉市| 综艺| 仙游县| 新沂市| 赫章县| 大港区| 镇江市| 花莲县| 电白县| 崇信县| 阳西县| 长宁区| 于都县| 秦安县| 新密市| 安图县|