找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Counting Surfaces; CRM Aisenstadt Chair Bertrand Eynard Book 2016 Springer International Publishing Switzerland 2016 Algebraic geometry.Com

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:38:54 | 只看該作者
Springer International Publishing Switzerland 2016
12#
發(fā)表于 2025-3-23 17:49:44 | 只看該作者
Werner Rittberger,Bernward JenschkeIn this chapter we introduce definitions of maps, which are discrete surfaces obtained by gluing polygons along their sides, and we define generating functions to count them. We also derive Tutte’s equations, which are recursive equations satisfied by the generating functions.
13#
發(fā)表于 2025-3-23 19:12:56 | 只看該作者
In this chapter we introduce the notion of a formal matrix integral, which is very useful for combinatorics, as it turns out to be identical to the generating function of maps of Chap.?.
14#
發(fā)表于 2025-3-24 00:36:43 | 只看該作者
15#
發(fā)表于 2025-3-24 05:48:27 | 只看該作者
16#
發(fā)表于 2025-3-24 10:17:50 | 只看該作者
https://doi.org/10.1007/978-3-476-03355-0We have seen, in almost all previous chapters, that symplectic invariants and topological recursion play an important role. They give the solution to Tutte’s recursion equation for maps, they give the formal expansion of various matrix integrals, including Kontsevich integral, and they also give the asymptotics of large maps.
17#
發(fā)表于 2025-3-24 10:54:20 | 只看該作者
18#
發(fā)表于 2025-3-24 18:27:56 | 只看該作者
Formal Matrix Integrals,In this chapter we introduce the notion of a formal matrix integral, which is very useful for combinatorics, as it turns out to be identical to the generating function of maps of Chap.?.
19#
發(fā)表于 2025-3-24 20:22:40 | 只看該作者
20#
發(fā)表于 2025-3-25 03:09:47 | 只看該作者
Counting Riemann Surfaces,In the previous chapter, we have computed the asymptotic generating functions of large maps, and we have seen that they are related to the (?.,?.) minimal model.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静乐县| 长治市| 太原市| 碌曲县| 勐海县| 泽州县| 西乡县| 塔城市| 句容市| 襄汾县| 九江市| 衡阳县| 洛隆县| 景谷| 甘洛县| 祁门县| 巴中市| 永州市| 丰城市| 葵青区| 青川县| 乌什县| 广平县| 奉新县| 阳高县| 吴堡县| 锦屏县| 靖宇县| 永丰县| 宁陕县| 建平县| 北票市| 大冶市| 常山县| 霸州市| 米易县| 宜宾市| 聊城市| 开化县| 塔河县| 盐源县|