找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Counterexamples in Operator Theory; Mohammed Hichem Mortad Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復制鏈接]
樓主: 猛烈抨擊
21#
發(fā)表于 2025-3-25 05:30:59 | 只看該作者
,Glaubwürdigkeit: ein Forschungsüberblick,One of the most powerful tools in the theory of normal operators is the following Fuglede theorem.
22#
發(fā)表于 2025-3-25 09:20:08 | 只看該作者
23#
發(fā)表于 2025-3-25 15:20:45 | 只看該作者
Norbert Konegen,Klaus SondergeldClearly, . and . have the same eigenvalues which, in this setting, means that . and . have equal spectra. To see why . and . are not unitarily equivalent, remember that two unitarily equivalent operators are simultaneously (e.g.) self-adjoint. Since . is self-adjoint and . is not, it follows that they cannot be unitarily equivalent.
24#
發(fā)表于 2025-3-25 17:36:33 | 只看該作者
Norbert Konegen,Klaus SondergeldConsider the operator equation: . where ., ., .?∈?.(.) are given and .?∈?.(.) is the unknown. This equation is more commonly known as the Sylvester equation.
25#
發(fā)表于 2025-3-25 20:44:12 | 只看該作者
Norbert Konegen,Klaus SondergeldShow that the mapping .?.. defined from .(.) into .(.) is not weakly continuous, that is, find a sequence (..) in .(.) that converges weakly to .?∈?.(.) yet . does not converge weakly to ...
26#
發(fā)表于 2025-3-26 01:23:36 | 只看該作者
Some Basic PropertiesThroughout this chapter, . and . denote two Hilbert spaces over . unless otherwise stated.
27#
發(fā)表于 2025-3-26 08:16:15 | 只看該作者
Basic Classes of Bounded Linear OperatorsLet . be a Hilbert space, and let .?∈?.(.). Let . be the identity operator on ..
28#
發(fā)表于 2025-3-26 11:28:53 | 只看該作者
Operator TopologiesLet . be a Hilbert space, and let (..) be a sequence in .(.).
29#
發(fā)表于 2025-3-26 13:53:21 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
广南县| 永平县| 黑山县| 梨树县| 留坝县| 乐山市| 新巴尔虎左旗| 芷江| 宣恩县| 阳春市| 青冈县| 龙游县| 杭州市| 临夏县| 河南省| 务川| 平江县| 卓资县| 梧州市| 怀仁县| 晋宁县| 乌鲁木齐市| 西和县| 云梦县| 丰都县| 宜君县| 黔南| 色达县| 无极县| 虞城县| 新邵县| 沐川县| 临颍县| 麻江县| 安新县| 安图县| 仙桃市| 文成县| 宜良县| 宁津县| 韩城市|