找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Counterexamples in Operator Theory; Mohammed Hichem Mortad Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: 猛烈抨擊
21#
發(fā)表于 2025-3-25 05:30:59 | 只看該作者
,Glaubwürdigkeit: ein Forschungsüberblick,One of the most powerful tools in the theory of normal operators is the following Fuglede theorem.
22#
發(fā)表于 2025-3-25 09:20:08 | 只看該作者
23#
發(fā)表于 2025-3-25 15:20:45 | 只看該作者
Norbert Konegen,Klaus SondergeldClearly, . and . have the same eigenvalues which, in this setting, means that . and . have equal spectra. To see why . and . are not unitarily equivalent, remember that two unitarily equivalent operators are simultaneously (e.g.) self-adjoint. Since . is self-adjoint and . is not, it follows that they cannot be unitarily equivalent.
24#
發(fā)表于 2025-3-25 17:36:33 | 只看該作者
Norbert Konegen,Klaus SondergeldConsider the operator equation: . where ., ., .?∈?.(.) are given and .?∈?.(.) is the unknown. This equation is more commonly known as the Sylvester equation.
25#
發(fā)表于 2025-3-25 20:44:12 | 只看該作者
Norbert Konegen,Klaus SondergeldShow that the mapping .?.. defined from .(.) into .(.) is not weakly continuous, that is, find a sequence (..) in .(.) that converges weakly to .?∈?.(.) yet . does not converge weakly to ...
26#
發(fā)表于 2025-3-26 01:23:36 | 只看該作者
Some Basic PropertiesThroughout this chapter, . and . denote two Hilbert spaces over . unless otherwise stated.
27#
發(fā)表于 2025-3-26 08:16:15 | 只看該作者
Basic Classes of Bounded Linear OperatorsLet . be a Hilbert space, and let .?∈?.(.). Let . be the identity operator on ..
28#
發(fā)表于 2025-3-26 11:28:53 | 只看該作者
Operator TopologiesLet . be a Hilbert space, and let (..) be a sequence in .(.).
29#
發(fā)表于 2025-3-26 13:53:21 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柏乡县| 扶绥县| 五峰| 江达县| 平陆县| 漳浦县| 巴马| 苗栗市| 囊谦县| 西贡区| 四会市| 仪陇县| 睢宁县| 富平县| 广宁县| 浙江省| 阳谷县| 淮南市| 宜兰市| 大宁县| 古丈县| 基隆市| 田林县| 塔城市| 乳山市| 通渭县| 奈曼旗| 肥城市| 浦城县| 江口县| 新巴尔虎右旗| 卓资县| 砀山县| 西华县| 峨边| 汾西县| 绥滨县| 东港市| 海宁市| 闻喜县| 沙河市|