找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convolution Equations and Singular Integral Operators; Selected Papers Leonid Lerer,Vadim Olshevsky,Ilya M. Spitkovsky Book 2010 Birkh?user

[復(fù)制鏈接]
樓主: Goiter
11#
發(fā)表于 2025-3-23 11:21:12 | 只看該作者
12#
發(fā)表于 2025-3-23 17:06:13 | 只看該作者
13#
發(fā)表于 2025-3-23 19:55:21 | 只看該作者
14#
發(fā)表于 2025-3-24 00:36:07 | 只看該作者
15#
發(fā)表于 2025-3-24 03:35:06 | 只看該作者
Changing composition of paid workforcesAlgebras generated by singular integral operators with piecewise continuous coefficients are studied in the papers [., ., ., .]. The results obtained there allow us to obtain theorems on solvability and index formulas for singular integral operators of new types.
16#
發(fā)表于 2025-3-24 10:24:36 | 只看該作者
A framework for describing workThe main topic of the present paper is the study of some Banach algebras of bounded linear operators acting in the spaces .. (1 < . < ∞). Generators of these algebras are defined by Toeplitz matrices constructed from the Fourier coefficients of functions having finite limits from the left and from the right at each point.
17#
發(fā)表于 2025-3-24 11:43:18 | 只看該作者
18#
發(fā)表于 2025-3-24 18:03:54 | 只看該作者
Changing requirements for work performanceLet Г be a closed or open oriented Lyapunov arc and ω(.) be a bijective mapping of Г onto itself. An operator of the form . is usually called a . ω(.). Here .(.), .(.), .(.), and .(.) are bounded measurable functions on Г, . is the operator of singular integration along Г given by . and . is the shift operator defined by
19#
發(fā)表于 2025-3-24 22:17:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:51:31 | 只看該作者
Inversion of Finite Toeplitz Matrices,In this communication Toeplitz matrices of the form ∥..∥., where .. (.=0,±1,...,±. are elements of some noncommutative algebra, and their continual analogues are considered. The theorems presented here are generalizations of theorems from [.] to the noncommutative case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 20:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂东县| 澳门| 离岛区| 商南县| 新民市| 泰顺县| 巴塘县| 曲阜市| 旌德县| 历史| 瓮安县| 南涧| 腾冲县| 香格里拉县| 南召县| 玉环县| 和政县| 宾阳县| 逊克县| 工布江达县| 武城县| 临漳县| 东方市| 阜城县| 西充县| 搜索| 福清市| 石门县| 唐海县| 安陆市| 克山县| 丘北县| 牡丹江市| 衡阳县| 广南县| 江油市| 布尔津县| 库尔勒市| 望江县| 灵川县| 巩义市|