找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity and Its Applications; Peter M. Gruber,J?rg M. Wills Book 1983 Springer Basel AG 1983 optimization.research.science and technolog

[復(fù)制鏈接]
樓主: 烤問
11#
發(fā)表于 2025-3-23 10:17:46 | 只看該作者
Valuations on convex bodies,rmassintegrals, surface area functions, and others. Hadwiger’s celebrated characterizations of the quermassintegrals by the valuation and other properties were the culmination of a series of papers on valuations and at the same time the starting point for various subsequent investigations of functionals with similar properties.
12#
發(fā)表于 2025-3-23 15:54:57 | 只看該作者
Wien (July 1981) and at the Universitat Siegen (July 1982) and in part of articles written at the invitation of the editors. This volume together with the earlier volume ?Contributions to Geometry? edited by Tolke and Wills and published by Birkhauser in 1979 should give a fairly good account of man
13#
發(fā)表于 2025-3-23 18:29:13 | 只看該作者
Software for Managing Web Courses,s in combinatorial optimization and introduce oriented matroid face lattices. We also discuss a discrete version of convexity for oriented matroids and show how Linear Programming can be generalized to oriented matroids.
14#
發(fā)表于 2025-3-24 01:22:07 | 只看該作者
15#
發(fā)表于 2025-3-24 04:55:56 | 只看該作者
Research on Teaching; Web Issues,s is based on certain postulates. One of these is: If one of two convex arcs with common endpoints lies between the other and the line joining the endpoints, the length of the first arc is smaller than that of the second. The determination of surface areas is founded on an analogous postulate.
16#
發(fā)表于 2025-3-24 09:33:41 | 只看該作者
17#
發(fā)表于 2025-3-24 11:41:24 | 只看該作者
18#
發(fā)表于 2025-3-24 18:44:30 | 只看該作者
19#
發(fā)表于 2025-3-24 20:09:50 | 只看該作者
20#
發(fā)表于 2025-3-24 23:24:54 | 只看該作者
New Results in the Theory of Packing and Covering, convex bodies in spaces of constant curvature, i.e. in Euclidean, spherical and hyperbolic space. Instead of saying that . is a packing into the whole space or . is a covering of the whole space we shall simply use the terms . and ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
敦化市| 洛川县| 宣汉县| 淮滨县| 海兴县| 民勤县| 永吉县| 武宁县| 四平市| 德惠市| 新竹县| 长子县| 房山区| 怀化市| 广河县| 滕州市| 连山| 武安市| 陆良县| 长白| 大荔县| 通化市| 辽中县| 澄迈县| 三穗县| 昆明市| 仙桃市| 凤阳县| 竹溪县| 清水河县| 九江市| 修文县| 永登县| 旌德县| 石柱| 区。| 屯门区| 镇平县| 虞城县| 滕州市| 全椒县|