找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity and Discrete Geometry Including Graph Theory; Mulhouse, France, Se Karim Adiprasito,Imre Bárány,Costin Vilcu Conference proceedin

[復制鏈接]
樓主: 恰當
21#
發(fā)表于 2025-3-25 05:48:40 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/c/image/237858.jpg
22#
發(fā)表于 2025-3-25 11:02:39 | 只看該作者
,Aufbau der Studie — Theorie und Methode,Tudor Zamfirescu was born as what is called in mathematics a counter-example. He is Roumanian, but he was born in Sweden (on 20 April 1944).
23#
發(fā)表于 2025-3-25 12:12:28 | 只看該作者
24#
發(fā)表于 2025-3-25 16:58:56 | 只看該作者
25#
發(fā)表于 2025-3-25 22:13:32 | 只看該作者
,Geschlecht, M?nnlichkeit und Vaterschaft,It is proved that every convex body in the plane has a point such that the union of the body and its image under reflection in the point is convex. If the body is not centrally symmetric, then it has, in fact, three affinely independent points with this property.
26#
發(fā)表于 2025-3-26 01:01:25 | 只看該作者
A Science of Mathematical Education,In this paper we shall improve the known bounds for the Helly dimension of the .-sum of centrally symmetric compact convex bodies and, using this bounds, we give the complete list of Hanner polytopes with Helly dimension at most 5.
27#
發(fā)表于 2025-3-26 05:14:43 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:27 | 只看該作者
29#
發(fā)表于 2025-3-26 15:37:29 | 只看該作者
30#
發(fā)表于 2025-3-26 19:09:38 | 只看該作者
Hamiltonicity in ,-tree-Halin GraphsA .. is a planar graph ., where . is a forest with at most . components and . is a cycle, such that .(.) is the set of all leaves of ., . bounds a face and no vertex has degree 2. This is a generalization of Halin graphs. We are investigating here the hamiltonicity and traceability of .-tree-Halin graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
缙云县| 房产| 牙克石市| 伊通| 房产| 鄢陵县| 馆陶县| 神木县| 和硕县| 克山县| 荣成市| 和田县| 维西| 广安市| 紫金县| 娄底市| 临沧市| 刚察县| 资阳市| 信阳市| 普兰县| 靖西县| 中江县| 四会市| 朝阳市| 福泉市| 佛山市| 顺平县| 洪湖市| 中方县| 巫溪县| 五大连池市| 松溪县| 调兵山市| 彰化市| 徐闻县| 乐业县| 枣强县| 东丽区| 苏尼特右旗| 凤庆县|