找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity Methods in Hamiltonian Mechanics; Ivar Ekeland Book 1990 Springer-Verlag Berlin Heidelberg 1990 Area.Convexity.Functionals.Hamil

[復(fù)制鏈接]
查看: 32533|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:39:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Convexity Methods in Hamiltonian Mechanics
編輯Ivar Ekeland
視頻videohttp://file.papertrans.cn/238/237856/237856.mp4
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Convexity Methods in Hamiltonian Mechanics;  Ivar Ekeland Book 1990 Springer-Verlag Berlin Heidelberg 1990 Area.Convexity.Functionals.Hamil
描述In the case of completely integrable systems, periodic solutions are found by inspection. For nonintegrable systems, such as the three-body problem in celestial mechanics, they are found by perturbation theory: there is a small parameter € in the problem, the mass of the perturbing body for instance, and for € = 0 the system becomes completely integrable. One then tries to show that its periodic solutions will subsist for € -# 0 small enough. Poincare also introduced global methods, relying on the topological properties of the flow, and the fact that it preserves the 2-form L~=l dPi 1 dqi‘ The most celebrated result he obtained in this direction is his last geometric theorem, which states that an area-preserving map of the annulus which rotates the inner circle and the outer circle in opposite directions must have two fixed points. And now another ancient theme appear: the least action principle. It states that the periodic solutions of a Hamiltonian system are extremals of a suitable integral over closed curves. In other words, the problem is variational. This fact was known to Fermat, and Maupertuis put it in the Hamiltonian formalism. In spite of its great aesthetic appeal, the
出版日期Book 1990
關(guān)鍵詞Area; Convexity; Functionals; Hamiltonian; Potential; eigenvalue; equation; form; hamiltonian system; mechani
版次1
doihttps://doi.org/10.1007/978-3-642-74331-3
isbn_softcover978-3-642-74333-7
isbn_ebook978-3-642-74331-3Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer-Verlag Berlin Heidelberg 1990
The information of publication is updating

書目名稱Convexity Methods in Hamiltonian Mechanics影響因子(影響力)




書目名稱Convexity Methods in Hamiltonian Mechanics影響因子(影響力)學(xué)科排名




書目名稱Convexity Methods in Hamiltonian Mechanics網(wǎng)絡(luò)公開(kāi)度




書目名稱Convexity Methods in Hamiltonian Mechanics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Convexity Methods in Hamiltonian Mechanics被引頻次




書目名稱Convexity Methods in Hamiltonian Mechanics被引頻次學(xué)科排名




書目名稱Convexity Methods in Hamiltonian Mechanics年度引用




書目名稱Convexity Methods in Hamiltonian Mechanics年度引用學(xué)科排名




書目名稱Convexity Methods in Hamiltonian Mechanics讀者反饋




書目名稱Convexity Methods in Hamiltonian Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:24:52 | 只看該作者
978-3-642-74333-7Springer-Verlag Berlin Heidelberg 1990
地板
發(fā)表于 2025-3-22 06:51:01 | 只看該作者
https://doi.org/10.1007/978-1-349-00207-8Consider a system of . linear equations with continuous . -periodic coefficients: . where . (.) is a real . × . matrix, depending continuously on . ∈ ? such that: ..
5#
發(fā)表于 2025-3-22 09:01:50 | 只看該作者
6#
發(fā)表于 2025-3-22 14:07:00 | 只看該作者
7#
發(fā)表于 2025-3-22 20:57:33 | 只看該作者
8#
發(fā)表于 2025-3-23 01:02:53 | 只看該作者
Manufacturing a Climate of Fear,The fixed-energy problems are the most interesting (and the most difficult) in the theory, because of their geometric significance. Many are still unsolved, and we conclude this chapter by listing the most important ones.
9#
發(fā)表于 2025-3-23 03:09:31 | 只看該作者
10#
發(fā)表于 2025-3-23 06:02:15 | 只看該作者
Convex Hamiltonian Systems,We start from a . (., .*, 〈·,·〉), that is, two real vector spaces . and .*, and a bilinear map (.,.*) → 〈.,.*〉 into ? which separates points: ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 21:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
饶平县| 康平县| 中卫市| 凯里市| 博湖县| 礼泉县| 唐河县| 屏东市| 张家界市| 衡山县| 平遥县| 泸西县| 松溪县| 石河子市| 普兰县| 晋中市| 长垣县| 英吉沙县| 清新县| 阿瓦提县| 偏关县| 商水县| 玛多县| 海城市| 沁源县| 亳州市| 周口市| 樟树市| 三门峡市| 新宁县| 如东县| 远安县| 绩溪县| 哈尔滨市| 涪陵区| 彭州市| 中山市| 建宁县| 寿阳县| 大荔县| 沾益县|