找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
41#
發(fā)表于 2025-3-28 15:26:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:21:15 | 只看該作者
43#
發(fā)表于 2025-3-29 01:40:32 | 只看該作者
44#
發(fā)表于 2025-3-29 06:42:45 | 只看該作者
An Optimization Problems with a Composite Objective Function,rors are different. We show that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
45#
發(fā)表于 2025-3-29 10:51:01 | 只看該作者
A Zero-Sum Game with Two Players,e computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
46#
發(fā)表于 2025-3-29 14:49:53 | 只看該作者
47#
發(fā)表于 2025-3-29 17:07:50 | 只看該作者
Continuous Subgradient Method, that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two calculations of our algorithm, we find out what approximate solution can be obtained and how much time one needs for this.
48#
發(fā)表于 2025-3-29 22:49:42 | 只看該作者
49#
發(fā)表于 2025-3-30 01:13:19 | 只看該作者
Safety and Epistemic Frankfurt Cases, step is a calculation of a gradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these two steps there is a computational error. In general, these two computational errors are different.
50#
發(fā)表于 2025-3-30 06:55:40 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1m generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪泽县| 阆中市| 济阳县| 曲靖市| 孝义市| 五家渠市| 彭泽县| 宿迁市| 平顺县| 阆中市| 友谊县| 旬邑县| 睢宁县| 延川县| 东光县| 濮阳市| 安仁县| 佛学| 钟祥市| 栾城县| 兰西县| 霞浦县| 五华县| 平罗县| 高邑县| 平凉市| 苗栗市| 长汀县| 确山县| 梅州市| 达州市| 塔城市| 怀安县| 五台县| 西和县| 台南市| 贵港市| 北辰区| 康定县| 晋中市| 丹东市|