找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
21#
發(fā)表于 2025-3-25 05:18:57 | 只看該作者
22#
發(fā)表于 2025-3-25 08:47:19 | 只看該作者
A Projected Subgradient Method for Nonsmooth Problems,this class of problems, an objective function is assumed to be convex but a set of admissible points is not necessarily convex. Our goal is to obtain an .-approximate solution in the presence of computational errors, where . is a given positive number.
23#
發(fā)表于 2025-3-25 14:54:30 | 只看該作者
https://doi.org/10.1007/978-3-663-07526-4mate solution of the problem in the presence of computational errors. It is known that the algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. In our study, presented in this book, we take into consideration the fact tha
24#
發(fā)表于 2025-3-25 16:30:54 | 只看該作者
https://doi.org/10.1007/978-3-663-07526-4f convex–concave functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points. For this algorithm each iteration consists of two steps. The first step is a calculation of a subgradient of the objective function while in the sec
25#
發(fā)表于 2025-3-25 20:04:59 | 只看該作者
Safety and Epistemic Frankfurt Cases,rs. The problem is described by an objective function and a set of feasible points. For this algorithm each iteration consists of two steps. The first step is a calculation of a gradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these
26#
發(fā)表于 2025-3-26 00:10:30 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1nvex–concave functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points. For this algorithm we need a calculation of a subgradient of the objective function and a calculation of a projection on the feasible set. In each of th
27#
發(fā)表于 2025-3-26 05:28:47 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:18 | 只看該作者
29#
發(fā)表于 2025-3-26 14:59:22 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:29 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1r. In general, these two computational errors are different. We show that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we fin
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金塔县| 平安县| 牙克石市| 札达县| 南开区| 祁门县| 抚顺县| 荥经县| 怀宁县| 类乌齐县| 天等县| 松桃| 汝州市| 林口县| 余干县| 南昌市| 涿州市| 汉源县| 哈密市| 宜丰县| 加查县| 彝良县| 陆河县| 阳山县| 平潭县| 上高县| 彭泽县| 小金县| 敦煌市| 海兴县| 合作市| 蚌埠市| 富宁县| 新干县| 惠州市| 雷山县| 日照市| 乳山市| 邻水| 兰溪市| 汽车|