找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations; Simon Markfelder Book 2021 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: 使無罪
21#
發(fā)表于 2025-3-25 04:37:33 | 只看該作者
Preparation for Applying Convex Integration to Compressible EulerBefore we implement convex integration in the context of the barotropic Euler system in Chap. ., we prepare some ingredients needed for convex integration in this chapter. In Sect. . we adjust the problem in such a way that we can apply convex integration.
22#
發(fā)表于 2025-3-25 07:54:11 | 只看該作者
Implementation of Convex IntegrationOur goal in this chapter is to prove the main result of this book, namely Theorem .. This theorem can be seen as a “compressible analogue” of a result by De Lellis and Székelyhidi, see [., Proposition 2] or [., Proposition 2.4].
23#
發(fā)表于 2025-3-25 13:31:46 | 只看該作者
24#
發(fā)表于 2025-3-25 19:54:07 | 只看該作者
Riemann Initial Data in Two Space Dimensions for Isentropic EulerIn this chapter we consider the isentropic Euler equations – this means barotropic with the particular pressure law (.) – on the whole two-dimensional space, i.e. .. Keep in mind the definition of admissible weak solutions to the corresponding initial value problems, namely Definition ..
25#
發(fā)表于 2025-3-25 22:17:00 | 只看該作者
26#
發(fā)表于 2025-3-26 03:54:15 | 只看該作者
27#
發(fā)表于 2025-3-26 07:44:21 | 只看該作者
0075-8434 hyperbolic conservation lawsThis book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was app
28#
發(fā)表于 2025-3-26 10:16:25 | 只看該作者
0075-8434 integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial bounda978-3-030-83784-6978-3-030-83785-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
29#
發(fā)表于 2025-3-26 14:15:27 | 只看該作者
Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations
30#
發(fā)表于 2025-3-26 19:14:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丁青县| 洛川县| 无棣县| 古浪县| 桂林市| 广河县| 大化| 乌拉特前旗| 贞丰县| 封开县| 泰安市| 仙游县| 长岛县| 台北市| 沂源县| 桃园市| 许昌县| 东丽区| 庆云县| 湘西| 黎平县| 额尔古纳市| 吉林省| 长宁县| 沁源县| 泸溪县| 湾仔区| 林口县| 华池县| 盘锦市| 九龙县| 卓尼县| 台江县| 正阳县| 定州市| 邵武市| 天峨县| 贵港市| 平陆县| 太仓市| 伊川县|