找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Cones; Geometry and Probabi Rolf Schneider Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spr

[復(fù)制鏈接]
樓主: 無力向前
21#
發(fā)表于 2025-3-25 05:03:54 | 只看該作者
22#
發(fā)表于 2025-3-25 10:03:40 | 只看該作者
23#
發(fā)表于 2025-3-25 14:18:22 | 只看該作者
Steiner and kinematic formulas,xpresses the (Euclidean, Gaussian, or spherical) volume of a parallel set of a suitable given set at a given distance ε as a function of ε, exhibiting a special form from which functionals depending only on the given set can be extracted.
24#
發(fā)表于 2025-3-25 18:07:31 | 只看該作者
Miscellanea on random cones,t may be possible to obtain explicit results for some expected geometric functionals of the random cone. The brief Section 6.1 deals with uniform random orthogonal projections of polyhedral cones (or general convex polyhedra). Section 6.2 treats images of general convex cones under linear maps defined by Gaussian matrices.
25#
發(fā)表于 2025-3-25 23:50:37 | 只看該作者
Winfried Beyer,Holger Sassenbachtroductory material about closed convex cones. Here we provide also some special lemmas, which will later be applied. Section 1.4 is devoted to polyhedra and deals with their normal cones and angle cones. In Section 1.5 we consider recession cones and show how they can be used in the description of
26#
發(fā)表于 2025-3-26 03:28:41 | 只看該作者
VersStG Ausnahmen von der Besteuerung,xpresses the (Euclidean, Gaussian, or spherical) volume of a parallel set of a suitable given set at a given distance ε as a function of ε, exhibiting a special form from which functionals depending only on the given set can be extracted.
27#
發(fā)表于 2025-3-26 06:06:11 | 只看該作者
28#
發(fā)表于 2025-3-26 10:27:52 | 只看該作者
29#
發(fā)表于 2025-3-26 14:09:50 | 只看該作者
30#
發(fā)表于 2025-3-26 20:28:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望城县| 钟山县| 罗城| 称多县| 荣昌县| 鹤庆县| 乐陵市| 景洪市| 石台县| 太原市| 揭东县| 贵港市| 龙江县| 石台县| 家居| 西昌市| 伊吾县| 涞源县| 金门县| 临沭县| 黑龙江省| 东乡| 偏关县| 易门县| 开封县| 龙里县| 宣恩县| 鄯善县| 且末县| 柏乡县| 海丰县| 麻阳| 双辽市| 北碚区| 濮阳县| 剑川县| 广灵县| 长岭县| 灵宝市| 临西县| 肇州县|