找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Heinz H. Bauschke,Patrick L. Combettes Book 2017Latest edition Springer In

[復制鏈接]
樓主: ODE
21#
發(fā)表于 2025-3-25 04:01:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:11:21 | 只看該作者
23#
發(fā)表于 2025-3-25 12:19:53 | 只看該作者
24#
發(fā)表于 2025-3-25 18:44:10 | 只看該作者
,Fenchel–Rockafellar Duality,Of central importance in convex analysis are conditions guaranteeing that the conjugate of a sum is the infimal convolution of the conjugates. The main result in this direction is a theorem due to Attouch and Brézis. In turn, it gives rise to the Fenchel–Rockafellar duality framework for convex optimization problems.
25#
發(fā)表于 2025-3-25 21:58:06 | 只看該作者
26#
發(fā)表于 2025-3-26 02:59:04 | 只看該作者
Convex Analysis and Monotone Operator Theory in Hilbert Spaces978-3-319-48311-5Series ISSN 1613-5237 Series E-ISSN 2197-4152
27#
發(fā)表于 2025-3-26 05:23:58 | 只看該作者
https://doi.org/10.1057/9781137508416asserts that every nonempty closed convex subset . of . is a Chebyshev set, i.e., that every point in . possesses a unique best approximation from ., and which provides a characterization of this best approximation.
28#
發(fā)表于 2025-3-26 08:47:31 | 只看該作者
https://doi.org/10.1057/9781137508416lems in nonlinear analysis reduce to finding fixed points of nonexpansive operators. In this chapter, we discuss nonexpansiveness and several variants. The properties of the fixed point sets of nonexpansive operators are investigated, in particular in terms of convexity.
29#
發(fā)表于 2025-3-26 15:50:18 | 只看該作者
https://doi.org/10.1057/9781137508416quences possess attractive properties that simplify the analysis of their asymptotic behavior. In this chapter, we provide the basic theory for Fejér monotone sequences and apply it to obtain in a systematic fashion convergence results for various classical iterations involving (quasi)nonexpansive operators.
30#
發(fā)表于 2025-3-26 19:23:44 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平阳县| 湄潭县| 东宁县| 黄石市| 玛多县| 河北区| 天镇县| 广昌县| 通化市| 大庆市| 澜沧| 会同县| 喀喇沁旗| 大荔县| 宝丰县| 和平区| 沾益县| 桓台县| 泾川县| 修水县| 阿克苏市| 泸溪县| 昭觉县| 沛县| 鹿邑县| 醴陵市| 西吉县| 武夷山市| 西和县| 巢湖市| 湘潭市| 文山县| 灵丘县| 环江| 武邑县| 万载县| 茌平县| 荔波县| 安多县| 磴口县| 资兴市|