找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Heinz H. Bauschke,Patrick L. Combettes Book 2017Latest edition Springer In

[復(fù)制鏈接]
樓主: ODE
11#
發(fā)表于 2025-3-23 10:30:48 | 只看該作者
Vandalism and Anti-Social BehaviourIn this chapter we present variants of the notion of convexity for functions. The most important are the weaker notion of quasiconvexity and the stronger notions of uniform and strong convexity.
12#
發(fā)表于 2025-3-23 14:40:17 | 只看該作者
13#
發(fā)表于 2025-3-23 21:12:28 | 只看該作者
https://doi.org/10.1057/9781137519269This chapter is devoted to a fundamental convexity-preserving operation for functions: the infimal convolution..Special attention is given to the Moreau envelope and the proximity operator.
14#
發(fā)表于 2025-3-24 01:18:40 | 只看該作者
Virtual Worlds as Philosophical ToolsOf central importance in convex analysis are conditions guaranteeing that the conjugate of a sum is the infimal convolution of the conjugates. The main result in this direction is a theorem due to Attouch and Brézis. In turn, it gives rise to the Fenchel–Rockafellar duality framework for convex optimization problems.
15#
發(fā)表于 2025-3-24 02:59:11 | 只看該作者
16#
發(fā)表于 2025-3-24 10:18:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:12:52 | 只看該作者
18#
發(fā)表于 2025-3-24 17:21:24 | 只看該作者
Support Functions and Polar Sets,In this chapter, we develop basic results concerning support points, including the Bishop–Phelps theorem and the representation of a nonempty closed convex set as the intersection of the closed half-spaces containing it. Polar sets are also studied.
19#
發(fā)表于 2025-3-24 20:27:02 | 只看該作者
Convex Functions,Convex functions, which lie at the heart of modern optimization, are introduced in this chapter. We study operations that preserve convexity and the interplay between various continuity properties.
20#
發(fā)表于 2025-3-25 03:07:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 成都市| 阳泉市| 宁武县| 德阳市| 麦盖提县| 海原县| 从江县| 额尔古纳市| 澎湖县| 郁南县| 浏阳市| 绥滨县| 西吉县| 增城市| 兰溪市| 龙陵县| 陵川县| 龙海市| 定边县| 云霄县| 霍邱县| 华蓥市| 襄汾县| 镇江市| 乐至县| 保德县| 阿鲁科尔沁旗| 谷城县| 嘉义县| 青冈县| 定南县| 莱阳市| 奉贤区| 凤庆县| 宣武区| 海阳市| 轮台县| 寿阳县| 英超| 延吉市|