找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Analysis and Global Optimization; Hoang Tuy Book 2016Latest edition Springer International Publishing AG 2016 D.C. functions.convex

[復(fù)制鏈接]
樓主: corrode
51#
發(fā)表于 2025-3-30 10:43:21 | 只看該作者
52#
發(fā)表于 2025-3-30 16:08:43 | 只看該作者
General Methods by relaxation or restriction. This chapter presents two most popular general methods: branch and bound (BB) and outer approximation (OA). Section?6.1 discusses the theoretical foundations of three basic types of partitioning processes: simplicial, conical, and rectangular, with a focus on the basic
53#
發(fā)表于 2025-3-30 17:43:44 | 只看該作者
DC Optimization Problems, concave minimization under convex constraints (Sect. 7.2), reverse convex programming (Sect. 7.3), general canonical dc optimization problem (Sect. 7.4), general robust approach to dc optimization (Sect. 7.5), and also applications of dc optimization in various fields (Sects. 7.6–7.8) such as desi
54#
發(fā)表于 2025-3-31 00:18:11 | 只看該作者
Special Methodspecial methods adapted to special problems of dc optimization and extensions: polyhedral annexation for concave minimization and reverse convex programming, decomposition method for convex problems depending upon a multivariate parameter, including decomposition of partly convex problems by reducing
55#
發(fā)表于 2025-3-31 02:32:07 | 只看該作者
56#
發(fā)表于 2025-3-31 08:45:15 | 只看該作者
Nonconvex Quadratic Programmingree of nonconvexity. One of the earliest significant results in this area is the celebrated S-Lemma of Yakubovich which plays a major role in the development of quadratic optimization. In this chapter, a study of nonconvex quadratic programming is provided that starts with a generalized S-Lemma esta
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳高县| 皋兰县| 利辛县| 彰化县| 五台县| 隆尧县| 吴桥县| 延津县| 寻甸| 吉林省| 永胜县| 九江县| 五原县| 金山区| 榆中县| 肇东市| 大埔区| 宜阳县| 东乌| 公安县| 吴忠市| 滨州市| 翼城县| 敦化市| 南华县| 福建省| 新兴县| 扎赉特旗| 陇南市| 阿鲁科尔沁旗| 灵寿县| 宜都市| 芦溪县| 石台县| 东台市| 新巴尔虎左旗| 鹿邑县| 揭东县| 水富县| 安多县| 蓬安县|