找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convergence Estimates in Approximation Theory; Vijay Gupta,Ravi P. Agarwal Book 2014 Springer International Publishing Switzerland 2014 Be

[復(fù)制鏈接]
樓主: FAULT
11#
發(fā)表于 2025-3-23 10:00:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:01:26 | 只看該作者
Vijay Gupta,Ravi P. AgarwalCovers general approximation methods on linear positive operators.Provides key results on study of convergence, its direct results, rate of convergence, and asymptotic behavior.Presents convergence in
13#
發(fā)表于 2025-3-23 21:31:00 | 只看該作者
http://image.papertrans.cn/c/image/237734.jpg
14#
發(fā)表于 2025-3-24 00:32:34 | 只看該作者
https://doi.org/10.1007/978-3-319-02765-4Bezier variant; approximation; bounded variation; convergence; linear combinations; linear positive opera
15#
發(fā)表于 2025-3-24 03:10:00 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:43 | 只看該作者
Some More Results on the Rate of Convergence,perators as special cases. They investigated their results for the classes of functions . [., .] and . [., .]. Also, Hua and Shaw [156] extended this problem for linear integral operators with a not necessarily positive kernel.
17#
發(fā)表于 2025-3-24 11:06:48 | 只看該作者
18#
發(fā)表于 2025-3-24 14:53:46 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:27 | 只看該作者
Vision-and-Language Pretraining for VQAperators as special cases. They investigated their results for the classes of functions . [., .] and . [., .]. Also, Hua and Shaw [156] extended this problem for linear integral operators with a not necessarily positive kernel.
20#
發(fā)表于 2025-3-25 01:46:45 | 只看該作者
https://doi.org/10.1007/978-981-19-2228-2ls. In more recent papers, some approximation properties of the Stancu-type generalization on different operators were discussed (see, e.g., [50, 133, 187, 238]). Future studies could address defining the Stancu-type generalization of other operators and the convergence behavior, asymptotic formulas
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开封市| 彭泽县| 肃北| 崇明县| 红桥区| 涿鹿县| 吴堡县| 石楼县| 汉川市| 图片| 贵港市| 仙居县| 绥阳县| 新建县| 邻水| 桓仁| 泰来县| 江永县| 承德县| 鲁山县| 庆元县| 邹平县| 阿图什市| 安徽省| 舒兰市| 常德市| 嘉义市| 无极县| 台安县| 武城县| 唐河县| 吴川市| 和政县| 黎城县| 抚远县| 澳门| 澄迈县| 长春市| 阿合奇县| 长顺县| 犍为县|