找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convection in Porous Media; Donald A. Nield,Adrian Bejan Textbook 19992nd edition Springer-Verlag New York 1999 energy.fluid mechanics.hea

[復(fù)制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 10:09:41 | 只看該作者
12#
發(fā)表于 2025-3-23 15:51:49 | 只看該作者
https://doi.org/10.1007/978-94-015-7293-4usual situation) or it undergoes small deformation. The interconnectedness of the void (the pores) allows the flow of one or more fluids through the material. In the simplest situation (“single-phase flow”) the void is saturated by a single fluid. In “two-phase flow” a liquid and a gas share the void space.
13#
發(fā)表于 2025-3-23 18:44:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:28:34 | 只看該作者
15#
發(fā)表于 2025-3-24 03:12:56 | 只看該作者
Springer-Verlag New York 1999
16#
發(fā)表于 2025-3-24 08:05:55 | 只看該作者
Mechanics of Fluid Flow Through a Porous Medium,usual situation) or it undergoes small deformation. The interconnectedness of the void (the pores) allows the flow of one or more fluids through the material. In the simplest situation (“single-phase flow”) the void is saturated by a single fluid. In “two-phase flow” a liquid and a gas share the void space.
17#
發(fā)表于 2025-3-24 13:32:03 | 只看該作者
External Natural Convection,ortant. For small values of the Rayleigh number Ra, perturbation methods are appropriate. At large values of Ra thermal boundary layers are formed, and boundary layer theory is the obvious method of investigation. This approach forms the subject of much of this chapter. We follow, to a large extent, the discussion by Cheng (1985a).
18#
發(fā)表于 2025-3-24 14:58:35 | 只看該作者
19#
發(fā)表于 2025-3-24 19:34:11 | 只看該作者
20#
發(fā)表于 2025-3-25 00:55:57 | 只看該作者
https://doi.org/10.1007/978-94-015-8030-4Since we have dealt with natural convection and forced convection in some detail, our treatment of mixed convection can be brief. It is guided by the review paper by Lai .. (1991a). We start with a treatment of boundary layer flow on heated plane walls inclined at some nonzero angle to the horizontal.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯门区| 广平县| 孝义市| 江门市| 正定县| 汝南县| 广水市| 仁布县| 桓台县| 同心县| 剑河县| 北安市| 临清市| 手机| 石楼县| 永新县| 榆社县| 鄄城县| 望奎县| 栾城县| 调兵山市| 罗田县| 八宿县| 温州市| 贵定县| 黎城县| 曲水县| 将乐县| 大余县| 沅江市| 兰考县| 义乌市| 安吉县| 济宁市| 米脂县| 岐山县| 县级市| 三原县| 中西区| 永寿县| 苏尼特左旗|