找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control of Degenerate and Singular Parabolic Equations; Carleman Estimates a Genni Fragnelli,Dimitri Mugnai Book 2021 The Author(s), under

[復(fù)制鏈接]
樓主: 不要提吃飯
11#
發(fā)表于 2025-3-23 12:26:33 | 只看該作者
,Warum ein Buch über Vertriebscontrolling?,We consider non degenerate singular parabolic problems, giving some existence or non existence results, which depend on the value of the parameter of the singular term. Null controllability results are presented, as well.
12#
發(fā)表于 2025-3-23 15:33:03 | 只看該作者
Jonas Reinhardt,Agostino MazziottaWe consider parabolic problems in divergence form with boundary degeneracy and power singularity, showing well posedness and null controllability.
13#
發(fā)表于 2025-3-23 18:32:20 | 只看該作者
14#
發(fā)表于 2025-3-24 00:41:21 | 只看該作者
15#
發(fā)表于 2025-3-24 03:08:22 | 只看該作者
The Non Singular Case: ,We show Carleman estimates for parabolic problems in divergence or non divergence form with degeneracy at the boundary or in the interior of the space domain. By them we obtain observability inequalities, proving that the problems are null controllable.
16#
發(fā)表于 2025-3-24 09:28:53 | 只看該作者
17#
發(fā)表于 2025-3-24 12:19:54 | 只看該作者
The Case of a Boundary Degenerate/Singular Parabolic Equation,We consider parabolic problems in divergence form with boundary degeneracy and power singularity, showing well posedness and null controllability.
18#
發(fā)表于 2025-3-24 16:27:12 | 只看該作者
19#
發(fā)表于 2025-3-24 21:12:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:45:09 | 只看該作者
Book 2021dents and senior researchers with a useful text, where they can find the desired statements and the related bibliography.? For these reasons, the authors will not give all the detailed proofs of the given theorems, but just some of them, in order to show the underlying strategy in this area..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上饶市| 普宁市| 饶平县| 惠水县| 通榆县| 新野县| 榕江县| 苍梧县| 鄂伦春自治旗| 固原市| 鹿泉市| 墨玉县| 贵港市| 鞍山市| 新竹市| 内黄县| 扎囊县| 涿州市| 汤阴县| 汨罗市| 贺兰县| 衡山县| 西宁市| 如皋市| 武定县| 昭通市| 林芝县| 贵南县| 晴隆县| 额济纳旗| 渭南市| 昂仁县| 蛟河市| 阿拉善盟| 东至县| 德令哈市| 吉隆县| 苍溪县| 雅安市| 麻栗坡县| 新乐市|