找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Control Theory of Infinite-Dimensional Systems; Joachim Kerner,Hafida Laasri,Delio Mugnolo Conference proceedings 2020 Springer Nature Swi

[復制鏈接]
樓主: Levelheaded
21#
發(fā)表于 2025-3-25 03:24:48 | 只看該作者
22#
發(fā)表于 2025-3-25 09:55:59 | 只看該作者
Der Soziologe als ?Ungl?ubiger Thomas“es. We also show that control problems on unbounded domains can be approximated by corresponding problems on a sequence of bounded domains forming an exhaustion. Our results apply also for the generalized heat equation associated with a Schr?dinger semigroup.
23#
發(fā)表于 2025-3-25 13:52:09 | 只看該作者
Conference proceedings 2020t the FernUniversit?t in Hagen. Topics include well-posedness, controllability, optimal control problems as well as stability of linear and nonlinear systems, and are covered by world-leading experts in these areas. .A distinguishing feature of the contributions in this volume is the particular comb
24#
發(fā)表于 2025-3-25 18:58:14 | 只看該作者
25#
發(fā)表于 2025-3-25 21:07:40 | 只看該作者
26#
發(fā)表于 2025-3-26 00:10:58 | 只看該作者
0255-0156 theory. More explicitly, the fields of partial differential equations, semigroup theory, mathematical physics, graph and network theory as well as numerical analysis are all well-represented..978-3-030-35900-3978-3-030-35898-3Series ISSN 0255-0156 Series E-ISSN 2296-4878
27#
發(fā)表于 2025-3-26 06:39:29 | 只看該作者
28#
發(fā)表于 2025-3-26 10:41:52 | 只看該作者
Ulrike Froschauer,Manfred Luegerhe Riccati equation. The boundedness of the nonnegative solution and the exponential stability of the associated feedback system is proved for the case that the generator of the system has a compact resolvent.
29#
發(fā)表于 2025-3-26 13:07:25 | 只看該作者
30#
發(fā)表于 2025-3-26 19:45:23 | 只看該作者
Rousseau, Rio and the Green Economye model that advocates sustainable development cannot be severed from one that is able to set global agendas, legitimizes principle of common actions and brings global communities to commit to a process of implementing change at the local, national and international level.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
安阳县| 于都县| 丘北县| 武邑县| 堆龙德庆县| 建瓯市| 武城县| 宁津县| 凤凰县| 霍山县| 江华| 称多县| 东兴市| 宁国市| 腾冲县| 衡阳市| 正蓝旗| 涪陵区| 湖州市| 甘孜县| 兴安盟| 九江县| 永胜县| 鲜城| 蒙城县| 莲花县| 新蔡县| 英吉沙县| 汕头市| 恩平市| 青海省| 佛学| 墨脱县| 铜山县| 沈丘县| 永泰县| 伊春市| 铜鼓县| 定西市| 武威市| 高尔夫|