找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Several Complex Variables; In Honour of Wilhelm Alan Howard (Professors),Pit-Mann Wong (Professors Book 1986 Springer Fach

[復(fù)制鏈接]
樓主: Maudlin
21#
發(fā)表于 2025-3-25 05:56:36 | 只看該作者
https://doi.org/10.1007/978-3-642-65889-1Jet bundles and logarithmic 1-forms play an important role in the study of the value distribution of meromorphic mappings into algebraic varieties (cf. [01] [G-G1] and [N1?41). On the other hand, logarithmic vector fields as well as logarithmic 1-forms have been used in the study of Gauss-Manin connection and singularities (cf. [S1]).
22#
發(fā)表于 2025-3-25 11:07:44 | 只看該作者
Gastric Acid Secretory MechanismsIn this note we give a numerical version of k-ampleness for line bundles (Definition 1) and prove a vanishing theorem (Theorem 2) of Nakano type for these bundles. This vanishing theorem yields a Lefschetz-type theorem (Theorem 3). We begin by reviewing the Nakai-Moishezon-Kleiman criterion for ampleness on which our numerical condition is based.
23#
發(fā)表于 2025-3-25 14:02:57 | 只看該作者
Compensation of Vestibular LesionsThis paper is a survey of recent developments in the theory of the extension of analytic sets and closed, positive currents.
24#
發(fā)表于 2025-3-25 18:39:44 | 只看該作者
The Heat Equation for the ,-Neumann Problem on Strictly Pseudoconvex Domains,The heat equation for the .-Neumann problem on strictly pseudoconvex domains is a complex analogue of a classical problem in Riemannian geometry. In this section, we will describe some of the classical Riemannian results. To keep things simple, we will only talk about domains.
25#
發(fā)表于 2025-3-25 23:33:48 | 只看該作者
,Complete K?hler Domains. A Survey of Some Recent Results,One of the major aspects of complex analysis consists in the investigation of the implications between geometric properties of complex analytic manifolds (or complex spaces) and the nature of certain complex analytic objects on them.
26#
發(fā)表于 2025-3-26 02:21:55 | 只看該作者
On the Minimality of Hyperplane Sections of Gorenstein Threefolds,Let X be a normal irreducible three dimensional projective variety whose local rings are Cohen Macaulay and whose dualizing sheaf, K. is invertible (see §0 for more details). We will call such a variety a Gorenstein threefold throughout this article.
27#
發(fā)表于 2025-3-26 05:35:34 | 只看該作者
On Meromorphic Equivalence Relations,We denote by X a weakly normal (see § 2.3.) complex space with countable topology and by R ? X × X an analytic set with the following two properties:
28#
發(fā)表于 2025-3-26 11:47:27 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:15 | 只看該作者
30#
發(fā)表于 2025-3-26 19:00:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄平县| 综艺| 榆社县| 满城县| 社会| 玉树县| 长治县| 长岭县| 许昌县| 六安市| 罗平县| 太仓市| 洛隆县| 革吉县| 屏南县| 平谷区| 巫山县| 桃园县| 屏山县| 理塘县| 新营市| 海原县| 龙州县| 巨鹿县| 淮阳县| 敦煌市| 蒙城县| 济阳县| 吴旗县| 山东| 瑞昌市| 鹤壁市| 万宁市| 安多县| 南投县| 枣强县| 利辛县| 思茅市| 玛纳斯县| 东港市| 灵璧县|