找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Several Complex Variables; In Honour of Wilhelm Alan Howard (Professors),Pit-Mann Wong (Professors Book 1986 Springer Fach

[復(fù)制鏈接]
樓主: Maudlin
11#
發(fā)表于 2025-3-23 13:16:08 | 只看該作者
W. Creutzfeldt,C. Creutzfeldt,R. Arnold as follows. Suppose X??. is an analytic variety of pure dimension p and q ≥ n-p. Let G(q,n) denote the Grassmannian of q-dimensional linear subspaces of ?.. We measure the “growth” of a variety Y of dimension p by computing vol.(Y?B.(r)) where vol. denotes the 2p-Hausdorff measure. Stoll’s result r
12#
發(fā)表于 2025-3-23 16:35:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:20:27 | 只看該作者
14#
發(fā)表于 2025-3-23 22:29:42 | 只看該作者
William Strieder,Rutherford Arisfits into a fine classification, details of its function theory, etc., one should use as much Lie theoretic information about ? as is possible. In particular it is often useful to study the orbit structure of real subgroups of ?. Such orbits are usually not complex sub-manifolds of X.
15#
發(fā)表于 2025-3-24 03:15:29 | 只看該作者
Vorlesungen über die Theorie der PolyederThe heat equation for the .-Neumann problem on strictly pseudoconvex domains is a complex analogue of a classical problem in Riemannian geometry. In this section, we will describe some of the classical Riemannian results. To keep things simple, we will only talk about domains.
16#
發(fā)表于 2025-3-24 08:21:42 | 只看該作者
Vorlesungen über die neuere GeometrieOne of the major aspects of complex analysis consists in the investigation of the implications between geometric properties of complex analytic manifolds (or complex spaces) and the nature of certain complex analytic objects on them.
17#
發(fā)表于 2025-3-24 11:39:27 | 只看該作者
,Konforme Abbildung von Minimalfl?chen,Let X be a normal irreducible three dimensional projective variety whose local rings are Cohen Macaulay and whose dualizing sheaf, K. is invertible (see §0 for more details). We will call such a variety a Gorenstein threefold throughout this article.
18#
發(fā)表于 2025-3-24 14:52:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:46 | 只看該作者
20#
發(fā)表于 2025-3-25 01:25:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜都市| 曲阳县| 佛山市| 乌鲁木齐市| 镇雄县| 正镶白旗| 海阳市| 图木舒克市| 江城| 黑水县| 蓝山县| 乌审旗| 岚皋县| 即墨市| 平顺县| 邯郸县| 宁陕县| 醴陵市| 固安县| 江孜县| 青田县| 库尔勒市| 疏附县| 确山县| 台东市| 三亚市| 鄂托克前旗| 炉霍县| 永嘉县| 连山| 北海市| 紫阳县| 佛教| 广饶县| 炎陵县| 安岳县| 天水市| 苍南县| 呼和浩特市| 于都县| 宝兴县|