找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions in Mathematical Physics; A Tribute to Gerard S. Twareque Ali,Kalyan B. Sinha Book 2007 Hindustan Book Agency (India) 2007

[復(fù)制鏈接]
樓主: 復(fù)雜
21#
發(fā)表于 2025-3-25 04:30:16 | 只看該作者
Physical Applications of Algebras of Unbounded Operators,ginally motivated by physical arguments, contain almost no physics at all. On the contrary the mathematical aspects of these algebras have been analyzed in many details and this analysis produced, up to now, the monographes [32] and [2]. Some physics appeared first in [28] and [31], in the attempt t
22#
發(fā)表于 2025-3-25 11:08:14 | 只看該作者
23#
發(fā)表于 2025-3-25 12:34:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:39:29 | 只看該作者
Infinite Divisibility in Euclidean Quantum Mechanics,e real potential .(.) is chosen so that the spectrum of . is nonnegative and the real, normalizable, nowhere vanishing ground state .(.) has zero energy eigenvalue; such systems are referred to as “simple systems” in this article. In this case, the ground state itself determines the Hamiltonian comp
25#
發(fā)表于 2025-3-25 21:37:53 | 只看該作者
The C* Axioms and the Phase Space Fomalism of Quantum Mechanics,em in an algebraic setting using the language of Irving Segal [19], and then continuing to obtain the C*-algebraic formalism for a physical system. Of these axioms, only the fifth contained an assumption that was questionable in its physical content. Bearing in mind that for each observable . and st
26#
發(fā)表于 2025-3-26 04:04:51 | 只看該作者
Stochastic Flow on the Quantum Heisenberg Manifold,ometry of such a manifold as a concrete example in non-commutative geometry [3]. In this article, a canonical non-commutative (quantum) stochastic flow is constructed on the quantum Heisenberg manifold which in a natural way is associated with the Dirac operator of the manifold.
27#
發(fā)表于 2025-3-26 05:36:40 | 只看該作者
28#
發(fā)表于 2025-3-26 11:47:37 | 只看該作者
29#
發(fā)表于 2025-3-26 16:09:30 | 只看該作者
30#
發(fā)表于 2025-3-26 17:57:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张掖市| 临颍县| 巴林右旗| 名山县| 洛川县| 临清市| 文山县| 北川| 双桥区| 大竹县| 柘城县| 黑河市| 屏南县| 黔西| 千阳县| 利津县| 鄱阳县| 佛学| 简阳市| 玛沁县| 无棣县| 玉屏| 连南| 临高县| 广灵县| 南阳市| 淅川县| 汉阴县| 仁布县| 丰台区| 辉县市| 青神县| 南涧| 烟台市| 方城县| 江陵县| 云南省| 长春市| 宁陵县| 五大连池市| 保德县|