找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous-Time Markov Chains and Applications; A Two-Time-Scale App G. George Yin,Qing Zhang Book 2013Latest edition Springer Science+Busi

[復(fù)制鏈接]
樓主: metabolism
31#
發(fā)表于 2025-3-26 23:54:58 | 只看該作者
Vergleichende Regierungslehre als Methodeit systems that are easier to handle than the original problems. The optimal or nearly optimal controls of the limit problems can be used to construct nearly optimal controls of the original systems. Although the limit systems are substantially simpler than the original pre-limit ones, very often cl
32#
發(fā)表于 2025-3-27 03:42:08 | 只看該作者
33#
發(fā)表于 2025-3-27 09:14:06 | 只看該作者
34#
發(fā)表于 2025-3-27 13:16:55 | 只看該作者
https://doi.org/10.1007/978-3-322-95175-5rward equation by means of sequences of functions so that the desired accuracy is reached. As alluded to in Chapter 1, we devote our attention to nonstationary Markov chains with time-varying generators.
35#
發(fā)表于 2025-3-27 14:22:32 | 只看該作者
https://doi.org/10.1007/978-3-322-95221-9he current chapter is largely probabilistic in nature. The central theme of this chapter is limit results of unscaled as well as scaled sequences of occupation measures, which include the law of large numbers for an unscaled sequence, exponential upper bounds, and asymptotic distribution of a suitably scaled sequence of occupation times.
36#
發(fā)表于 2025-3-27 21:37:29 | 只看該作者
37#
發(fā)表于 2025-3-27 23:33:23 | 只看該作者
https://doi.org/10.1007/978-3-322-95407-7Continuing the central themes of this book, as an application of the asymptotic properties of two-time-scale Markov chains, this chapter focuses on a class of Markov decision processes (MDPs). Our main attention is on finite-state continuous-time Markov decision processes having weak and strong interactions.
38#
發(fā)表于 2025-3-28 03:32:21 | 只看該作者
https://doi.org/10.1007/978-3-322-95532-6While Chapter 7 deals with Markov decision processes, this chapter is concerned with stochastic dynamical systems with the state . and the control . satisfying
39#
發(fā)表于 2025-3-28 09:52:21 | 只看該作者
Markov Decision ProblemsContinuing the central themes of this book, as an application of the asymptotic properties of two-time-scale Markov chains, this chapter focuses on a class of Markov decision processes (MDPs). Our main attention is on finite-state continuous-time Markov decision processes having weak and strong interactions.
40#
發(fā)表于 2025-3-28 11:11:18 | 只看該作者
Stochastic Control of Dynamical SystemsWhile Chapter 7 deals with Markov decision processes, this chapter is concerned with stochastic dynamical systems with the state . and the control . satisfying
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹巴县| 万荣县| 灵川县| 常熟市| 金溪县| 广水市| 舒城县| 资中县| 全州县| 准格尔旗| 陆川县| 玉田县| 仁化县| 刚察县| 吴川市| 将乐县| 广宗县| 红河县| 叶城县| 特克斯县| 新竹县| 木兰县| 绵阳市| 阿克| 蛟河市| 咸丰县| 台北县| 清水河县| 吉安县| 襄垣县| 嵊泗县| 桦川县| 浮梁县| 德阳市| 白沙| 沙田区| 通化市| 阿拉善左旗| 化州市| 乐平市| 金乡县|