找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contemporary Developments in Statistical Theory; A Festschrift for Hi Soumendra Lahiri,Anton Schick,T.N. Sriram Conference proceedings 2014

[復(fù)制鏈接]
樓主: 果園
31#
發(fā)表于 2025-3-26 22:45:35 | 只看該作者
32#
發(fā)表于 2025-3-27 04:38:07 | 只看該作者
,On Equality in Distribution of Ratios ,?and?,,t condition, allowing for possible dependence between ., under which the ratios of the components . to their sum are equal in distribution. Our finding is easily extended to random vectors of higher (.) dimensions to show that . of a finite sequence . is sufficient to guarantee the desired result. A
33#
發(fā)表于 2025-3-27 07:14:14 | 只看該作者
Nonparametric Distribution-Free Model Checks for Multivariate Dynamic Regressions,ional moments of unknown form and multivariate regressors. The proposed test statistics are continuous functionals of a Khmaladze-Rossenblatt.s transform of a function-parametric residual marked process. Thus, our results extend those of Koul and Stute (1999) and Khmaladze and Koul (2004) to the mul
34#
發(fā)表于 2025-3-27 10:32:41 | 只看該作者
35#
發(fā)表于 2025-3-27 14:57:40 | 只看該作者
36#
發(fā)表于 2025-3-27 21:23:19 | 只看該作者
Fiducial Theory for Free-Knot Splines,ator. We show that splines of degree four and higher satisfy those conditions and conduct a simulation study to evaluate quality of the fiducial estimates compared to the competing Bayesian solution. The fiducial confidence intervals achieve the desired confidence level while tending to be shorter t
37#
發(fā)表于 2025-3-28 01:37:44 | 只看該作者
38#
發(fā)表于 2025-3-28 04:52:15 | 只看該作者
Averaged Regression Quantiles,mptotically equivalent to the α-quantile of the location model. This relation remains true under the local heteroscedasticity of the model errors. As such, the averaged regression quantile provides various scale statistics, used for studentization and standardization in linear model, and an estimate
39#
發(fā)表于 2025-3-28 09:20:21 | 只看該作者
40#
發(fā)表于 2025-3-28 13:48:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闻喜县| 剑川县| 富裕县| 屏东县| 宝山区| 城市| 固原市| 商水县| 镇原县| 巨野县| 台南县| 孟津县| 裕民县| 满洲里市| 新沂市| 韶关市| 周口市| 荣成市| 九寨沟县| 大邑县| 乐昌市| 上犹县| 丘北县| 称多县| 广南县| 清水县| 昭通市| 彰化市| 望奎县| 普宁市| 崇明县| 武宁县| 宁蒗| 札达县| 浪卡子县| 上高县| 克什克腾旗| 科技| 克拉玛依市| 璧山县| 萝北县|