找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan; Josef Dick,Frances Y. Kuo,Henryk Wo?niakowski Bo

[復制鏈接]
樓主: 惡夢
31#
發(fā)表于 2025-3-26 21:55:22 | 只看該作者
32#
發(fā)表于 2025-3-27 05:07:39 | 只看該作者
33#
發(fā)表于 2025-3-27 07:17:03 | 只看該作者
34#
發(fā)表于 2025-3-27 11:54:37 | 只看該作者
35#
發(fā)表于 2025-3-27 16:11:01 | 只看該作者
36#
發(fā)表于 2025-3-27 20:40:02 | 只看該作者
37#
發(fā)表于 2025-3-28 00:17:56 | 只看該作者
,Einführung in den Problemkreis,We prove that there is no strongly regular graph (SRG) with parameters (460, 153, 32, 60). The proof is based on a recent lower bound on the number of 4-cliques in a SRG and some applications of Euclidean representation of SRGs.
38#
發(fā)表于 2025-3-28 02:38:25 | 只看該作者
Gerd Steierwald,Jürgen GoldbachWe produce low-discrepancy infinite sequences which can be used to approximate the integral of a smooth periodic function restricted to a smooth convex domain with positive curvature in .. The proof depends on simultaneous Diophantine approximation and on appropriate estimates of the decay of the Fourier transform of characteristic functions.
39#
發(fā)表于 2025-3-28 06:40:18 | 只看該作者
,Optimale überwachung in der Praxis,Using recent results on subperiodic trigonometric Gaussian quadrature and the construction of subperiodic trigonometric orthogonal bases, we extend Sloan’s notion of hyperinterpolation to trigonometric spaces on subintervals of the period. The result is relevant, for example, to function approximation on spherical or toroidal rectangles.
40#
發(fā)表于 2025-3-28 11:02:47 | 只看該作者
There Is No Strongly Regular Graph with Parameters (460, 153, 32, 60),We prove that there is no strongly regular graph (SRG) with parameters (460, 153, 32, 60). The proof is based on a recent lower bound on the number of 4-cliques in a SRG and some applications of Euclidean representation of SRGs.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
中西区| 广州市| 沿河| 喀喇沁旗| 岳西县| 肇源县| 塘沽区| 兴化市| 岳西县| 孝义市| 商南县| 洱源县| 福州市| 页游| 宜都市| 鹿泉市| 罗定市| 车致| 山东| 故城县| 封开县| 迁安市| 平顶山市| 乌审旗| 永宁县| 铅山县| 湛江市| 东城区| 五家渠市| 夏邑县| 吴堡县| 朝阳市| 东乡县| 永兴县| 错那县| 大同县| 清苑县| 岫岩| 交口县| 和田市| 平陆县|