找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contactless Healthcare Facilitation and Commodity Delivery Management During COVID 19 Pandemic; Mousmi Ajay Chaurasia,Stefan Mozar Book 20

[復制鏈接]
樓主: antibody
41#
發(fā)表于 2025-3-28 16:21:53 | 只看該作者
42#
發(fā)表于 2025-3-28 20:06:49 | 只看該作者
43#
發(fā)表于 2025-3-29 00:09:35 | 只看該作者
44#
發(fā)表于 2025-3-29 03:16:24 | 只看該作者
45#
發(fā)表于 2025-3-29 10:02:10 | 只看該作者
Interpretation of COVID-19 CT Scans, for the screening of COVID-19. The efficacy of U-Net and fully convolutional neural networks is evaluated by means of a CT scan dataset obtained from COVID-19 patients. The attention mechanism is applied to U-Net architecture to capture rich contextual relationships for better feature representatio
46#
發(fā)表于 2025-3-29 13:27:11 | 只看該作者
Deep Learning-Based Prediction of nCOVID-19 Disease Using Chest X-ray Images (CXRIs), as early as possible to avoid further spread of the nCOVID-19 and to rapidly treat the affected patients. Recent studies have suggested that such CXRIs contain salient details about the nCOVID-19. Application of deep learning to such CXRIs can be supportive for the precise detection of this disease
47#
發(fā)表于 2025-3-29 17:44:32 | 只看該作者
Explainable Deep Learning Through Grad-CAM and Feature Visualization for the Detection of COVID-19 T scan (CTS) as well. Several deep learning models, particularly convolutional neural networks (CNNs), have been built to detect COVID-19 from CXR and CTS. Most of the CNNs generate good results; however, there is a need to explain the model. Since CNNs are difficult to interpret and explain, it is
48#
發(fā)表于 2025-3-29 22:09:36 | 只看該作者
49#
發(fā)表于 2025-3-30 01:01:47 | 只看該作者
Personal Cloud System for Hospital Data Management to Store COVID-19 Patients Records,data collection, testing, and other decision-making purposes. When we exchange data with others, we want to ensure that individuals’ privacy is protected as well. The COVID-19 pandemic has produced a large amount of data in hospitals that must be managed and refined as well as for successful future
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 18:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
温泉县| 台北市| 大埔县| 张家界市| 兴安县| 全南县| 平乡县| 石泉县| 盖州市| 大同县| 红桥区| 葵青区| 河东区| 安多县| 获嘉县| 锡林郭勒盟| 兴海县| 韶山市| 珲春市| 镇江市| 历史| 准格尔旗| 六枝特区| 廉江市| 庆安县| 台东县| 南木林县| 礼泉县| 枣庄市| 沧源| 新密市| 潞城市| 桂东县| 延庆县| 莫力| 公安县| 迁西县| 泸西县| 甘南县| 贵州省| 兴安县|