找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact and Symplectic Topology; Frédéric Bourgeois,Vincent Colin,András Stipsicz Book 2014 Copyright jointly owned by the János Bolyai Ma

[復(fù)制鏈接]
樓主: Taft
31#
發(fā)表于 2025-3-26 23:23:59 | 只看該作者
https://doi.org/10.1007/978-3-662-10716-4e use the open book decompositions in the case of closed manifolds, and partial open book decompositions in the case of contact manifolds with convex boundary to define contact invariants in both settings, and show some applications to fillability questions.
32#
發(fā)表于 2025-3-27 04:26:40 | 只看該作者
Contact Invariants in Floer Homology,e use the open book decompositions in the case of closed manifolds, and partial open book decompositions in the case of contact manifolds with convex boundary to define contact invariants in both settings, and show some applications to fillability questions.
33#
發(fā)表于 2025-3-27 05:22:09 | 只看該作者
34#
發(fā)表于 2025-3-27 10:46:52 | 只看該作者
,A Beginner’s Introduction to Fukaya Categories,essary technical detail), and briefly discuss algebraic concepts such as exact triangles and generators. Finally, we mention wrapped Fukaya categories and outline a few applications to symplectic topology, mirror symmetry and low-dimensional topology.
35#
發(fā)表于 2025-3-27 13:35:54 | 只看該作者
36#
發(fā)表于 2025-3-27 18:03:03 | 只看該作者
37#
發(fā)表于 2025-3-28 01:59:57 | 只看該作者
38#
發(fā)表于 2025-3-28 04:52:12 | 只看該作者
Lecture Notes on Embedded Contact Homology,ich in the summer of 2012, a series of accompanying blog postings at ., and related lectures at UC Berkeley in Fall 2012. There is already a brief introduction to ECH in the article of M. Hutchings (in Proceedings of the 2010 ICM, vol. II, pp. 1022–1041, .), but the present notes give much more background and detail.
39#
發(fā)表于 2025-3-28 07:59:57 | 只看該作者
40#
發(fā)表于 2025-3-28 10:43:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西乌| 华宁县| 溆浦县| 堆龙德庆县| 多伦县| 确山县| 鹤山市| 淳化县| 偃师市| 双桥区| 绥棱县| 兰溪市| 金秀| 来凤县| 锡林郭勒盟| 右玉县| 泰和县| 洮南市| 乐至县| 七台河市| 沙坪坝区| 土默特左旗| 黄骅市| 日土县| 杂多县| 宣恩县| 涞源县| 通化市| 运城市| 清苑县| 永川市| 新安县| 南投市| 天气| 龙江县| 正蓝旗| 鄢陵县| 新竹市| 上蔡县| 北辰区| 万荣县|