找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contact and Symplectic Topology; Frédéric Bourgeois,Vincent Colin,András Stipsicz Book 2014 Copyright jointly owned by the János Bolyai Ma

[復(fù)制鏈接]
樓主: Taft
11#
發(fā)表于 2025-3-23 13:41:29 | 只看該作者
978-3-319-35063-9Copyright jointly owned by the János Bolyai Mathematical Society and Springer 2014
12#
發(fā)表于 2025-3-23 17:40:57 | 只看該作者
13#
發(fā)表于 2025-3-23 19:11:26 | 只看該作者
14#
發(fā)表于 2025-3-24 00:12:03 | 只看該作者
15#
發(fā)表于 2025-3-24 03:56:03 | 只看該作者
https://doi.org/10.1007/978-3-662-10716-4how to define overtwistedness. We start with an overview of some basic examples and theorems known so far, comparing them with analogous results in dimension three. We will also describe an easy construction of non-fillable manifolds by Fran Presas. Then we will explain how to use holomorphic curves
16#
發(fā)表于 2025-3-24 06:56:26 | 只看該作者
https://doi.org/10.1007/978-3-662-10716-4r homologies. Soon after, they associated to a contact structure . on a 3-manifold, an element of its Heegaard-Floer homology, the contact invariant .(.). This invariant has been used to prove a plethora of results in contact topology of 3-manifolds. In this series of lectures we introduce and revie
17#
發(fā)表于 2025-3-24 14:40:33 | 只看該作者
The UO2 Molecule and the UO 2 + Ion respect to gluings. In these notes we will introduce the key features of bordered Heegaard Floer homology: its formal structure, a precise definition of the invariants of surfaces, a sketch of the definitions of the 3-manifold invariants, and some hints at the analysis underlying the theory. We als
18#
發(fā)表于 2025-3-24 18:17:25 | 只看該作者
https://doi.org/10.1007/978-3-662-10719-5ometry of Affine Complex Manifolds, Colloquium Publications, vol.?59, .). It is compiled from two short lecture series given by the first author in 2012 at the Institute for Advanced Study, Princeton, and the Alfréd Rényi Institute of Mathematics, Budapest.
19#
發(fā)表于 2025-3-24 21:06:16 | 只看該作者
Mechanical and Thermal Propertiesred across a number of papers. We also discuss the origins of ECH, including various remarks and examples which have not been previously published. Finally, we review the recent application to four-dimensional symplectic embedding problems. This article is based on lectures given in Budapest and Mun
20#
發(fā)表于 2025-3-25 00:42:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤城县| 新野县| 平泉县| 康平县| 临猗县| 十堰市| 上虞市| 宿州市| 达尔| 若尔盖县| 阜南县| 工布江达县| 揭西县| 威海市| 克什克腾旗| 库尔勒市| 密云县| 双鸭山市| 广东省| 晴隆县| 瓦房店市| 仪征市| 柯坪县| 天全县| 寿光市| 阿克陶县| 定安县| 宿州市| 罗平县| 拜泉县| 中方县| 历史| 贡山| 苏尼特左旗| 南皮县| 永丰县| 武定县| 无极县| 河西区| 疏附县| 奉节县|