找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Theory of Functions of Several Variables; Proceedings of a Con Walter Schempp,Karl Zeller Conference proceedings 1977 Springer

[復(fù)制鏈接]
樓主: 驅(qū)逐
11#
發(fā)表于 2025-3-23 10:21:52 | 只看該作者
12#
發(fā)表于 2025-3-23 15:41:10 | 只看該作者
13#
發(fā)表于 2025-3-23 18:03:00 | 只看該作者
14#
發(fā)表于 2025-3-24 02:04:56 | 只看該作者
Splines minimizing rotation-invariant semi-norms in Sobolev spaces,plines in one dimension. In general, data functionals are only supposed to be distributions with compact supports, belonging to H.(?.); there may be infinitely many of them. Splines are then expressed as convolutions μ . |t|. (or μ . |t|. Log |t|) + polynomials.
15#
發(fā)表于 2025-3-24 05:40:00 | 只看該作者
https://doi.org/10.1007/BFb0086559Invariant; Konstruktive Funktionentheorie; Manifold; Several Variables; Variables; convolution; function; t
16#
發(fā)表于 2025-3-24 09:47:31 | 只看該作者
17#
發(fā)表于 2025-3-24 12:26:51 | 只看該作者
Constructive Theory of Functions of Several Variables978-3-540-37496-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
18#
發(fā)表于 2025-3-24 15:21:26 | 只看該作者
0075-8434 Overview: 978-3-540-08069-5978-3-540-37496-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
19#
發(fā)表于 2025-3-24 22:23:30 | 只看該作者
Richard Willst?tter,Arthur Stollpecial ideals a n-dimensional generalization of Max Noether‘s theorem is obtained. This generalization enables us to answer questions arising in the constructive theory of functions as it is shown by three examples.
20#
發(fā)表于 2025-3-25 00:23:45 | 只看該作者
Untersuchung der Farbstoffgemische,h the dimension of the polynomials space in request in order to have the scheme numerically stable. In some concrete cases, the rate of growth of the Clenshaw sums is estimated. A most favorable rate of growth can be observed if the scheme is based on multivariate Cebyshev polynomials of the second kind.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马龙县| 礼泉县| 尼玛县| 兴国县| 郑州市| 彰化县| 夏津县| 焉耆| 临澧县| 昌都县| 利辛县| 马龙县| 常州市| 夹江县| 调兵山市| 许昌市| 大同市| 东莞市| 尉氏县| 呈贡县| 大石桥市| 中西区| 东至县| 大冶市| 若尔盖县| 绥棱县| 通许县| 南宁市| 福贡县| 阿勒泰市| 宜春市| 高唐县| 涟源市| 福泉市| 文山县| 普兰县| 阆中市| 泌阳县| 鱼台县| 南岸区| 剑阁县|