找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Nonsmooth Analysis and Related Topics; Vladimir F. Demyanov,Panos M. Pardalos,Mikhail Bat Book 2014 Springer Science+Business

[復制鏈接]
樓主: onychomycosis
41#
發(fā)表于 2025-3-28 17:03:49 | 只看該作者
42#
發(fā)表于 2025-3-28 22:12:14 | 只看該作者
Alternance Form of Optimality Conditions in the Finite-Dimensional Space,a point under study satisfies the conditions, and, secondly, if it does not, to find a “better” point. This is why such conditions should be “constructive” letting to solve the above-mentioned problems. For the class of directionally differentiable functions in . ., a necessary condition for an unco
43#
發(fā)表于 2025-3-29 02:23:58 | 只看該作者
Optimal Multiple Decision Statistical Procedure for Inverse Covariance Matrix,tistical procedure is given. This procedure is constructed using the Lehmann theory of multiple decision statistical procedures and the conditional tests of the Neyman structure. The equations for thresholds calculation for the tests of the Neyman structure are analyzed.
44#
發(fā)表于 2025-3-29 04:16:54 | 只看該作者
https://doi.org/10.1007/978-3-642-10663-7arest to the origin. If the origin does not belong to ., we easily find the steepest descent direction and are able to construct a numerical method. For the classical Chebyshev approximation problem (the problem of approximating a function .(.): . → . by a polynomial .(.)), the condition for a minim
45#
發(fā)表于 2025-3-29 09:09:11 | 只看該作者
Alternance Form of Optimality Conditions in the Finite-Dimensional Space,arest to the origin. If the origin does not belong to ., we easily find the steepest descent direction and are able to construct a numerical method. For the classical Chebyshev approximation problem (the problem of approximating a function .(.): . → . by a polynomial .(.)), the condition for a minim
46#
發(fā)表于 2025-3-29 12:49:42 | 只看該作者
1931-6828 ributes to three giants of nonsmooth analysis, convexity, and optimization: Alexandr Alexandrov, Leonid Kantorovich, and Alex Rubinov. The last chapter provides an overview and important snapshots of the 50-year history of convex analysis and optimization..978-1-4939-4631-0978-1-4614-8615-2Series ISSN 1931-6828 Series E-ISSN 1931-6836
47#
發(fā)表于 2025-3-29 17:28:17 | 只看該作者
48#
發(fā)表于 2025-3-29 22:41:04 | 只看該作者
Constructive Nonsmooth Analysis and Related Topics
49#
發(fā)表于 2025-3-30 02:29:42 | 只看該作者
50#
發(fā)表于 2025-3-30 06:46:25 | 只看該作者
Separable Reduction of Metric Regularity Properties,a separable subspace . ? . containing . . such that the mapping whose graph is the intersection of the graph of . with . × . (restriction of . to . × .) is metrically regular near the same point. Moreover, it is shown that the rates of regularity of the mapping near the point can be recovered from the rates of such restrictions.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
和林格尔县| 东丰县| 偃师市| 玉树县| 井陉县| 凌云县| 象州县| 攀枝花市| 郯城县| 昭通市| 迁西县| 日照市| 炉霍县| 建瓯市| 望江县| 萨迦县| 寿宁县| 苍山县| 新密市| 岳阳市| 印江| 苍山县| 桃江县| 佛山市| 五华县| 雷州市| 内乡县| 株洲县| 华池县| 喜德县| 宽城| 乌拉特前旗| 富阳市| 西林县| 嘉义县| 大英县| 沿河| 东乡县| 通河县| 绵阳市| 亳州市|