找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Constructive Methods for the Practical Treatment of Integral Equations; Proceedings of the C G. H?mmerlin,K.-H. Hoffmann Conference proceed

[復(fù)制鏈接]
樓主: 紀(jì)念性
31#
發(fā)表于 2025-3-26 21:06:59 | 只看該作者
32#
發(fā)表于 2025-3-27 02:10:12 | 只看該作者
33#
發(fā)表于 2025-3-27 06:01:14 | 只看該作者
34#
發(fā)表于 2025-3-27 11:58:55 | 只看該作者
Optimal Discrepancy Principles for the Tikh0n0v Regularization of Integral Equations of the First Kon” of(1.1) Tx = y,i.e., the unique element that has minimal norm among all minimizers of the residual |Tx-y|. The best-approximate solution is actually given by T?y where T is the Moore-Penrose generalized inverse of T (see e.g. [15], [7]).
35#
發(fā)表于 2025-3-27 15:02:33 | 只看該作者
36#
發(fā)表于 2025-3-27 18:35:23 | 只看該作者
On the Condition Number of Boundary Integral Equations in Acoustic Scattering using Combined Doubleme-harmonic acoustic scattering, can be resolved by seeking the solutions in the form of a combined double- and single-layer potential. We present an outline of an analysis of the appropriate choice of the coupling parameter in order to minimize the condition number of the integral equations.
37#
發(fā)表于 2025-3-28 01:26:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:54:46 | 只看該作者
39#
發(fā)表于 2025-3-28 06:46:04 | 只看該作者
Solving Integral Equations on Surfaces in Space, operator is compact from C(S) into itself. We will consider a collocation method for numerically solving (1.1), with the approximating solution a function that is piecewise quadratic in a parameterization of the surface. The numerical method is of independent interest, but we have chosen the method
40#
發(fā)表于 2025-3-28 13:47:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 19:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和田市| 北宁市| 和林格尔县| 洛浦县| 泗水县| 丰原市| 铜鼓县| 峨边| 子洲县| 林州市| 南溪县| 辉县市| 盈江县| 德兴市| 五家渠市| 上虞市| 阜城县| 体育| 兴业县| 昌都县| 和龙市| 塘沽区| 乌什县| 始兴县| 德惠市| 兴城市| 吉林省| 霍邱县| 博乐市| 乐亭县| 永和县| 浮山县| 沙湾县| 东方市| 团风县| 西昌市| 麟游县| 保山市| 宝坻区| 内乡县| 浙江省|