找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Connectionist Models of Learning, Development and Evolution; Proceedings of the S Robert M. French,Jacques P. Sougné Conference proceedings

[復(fù)制鏈接]
樓主: CRUST
41#
發(fā)表于 2025-3-28 15:11:20 | 只看該作者
Recognition of Novelty Made Easy: Constraints of Channel Capacity on Generative Networks effective information transfer in the brain. Robust and fast information flow processing methods warranting efficient information transfer, e.g. grouping of inputs and information maximization principles need to be applied. For this reason, indepent component analyses on groups of patterns were con
42#
發(fā)表于 2025-3-28 21:52:31 | 只看該作者
43#
發(fā)表于 2025-3-29 02:05:37 | 只看該作者
Developing Knowledge about Living Things: A Connectionist Investigationata shows differences in the rate at which children acquire subcategories of living things, differences in the timing of changes in knowledge organisation, and changes in the distribution of feature types children use to represent their knowledge. The connectionist model was developed to investigate
44#
發(fā)表于 2025-3-29 04:50:45 | 只看該作者
Paying Attention to Relevant Dimensions: A Localist Approach stimulus dimensions are irrelevant to the classification task in hand. A procedure is suggested by which a localist model can learn prototype representations that foeus on the relevant dimensions only. These permit good generalization which would be lacking in a simple exemplar-based model.
45#
發(fā)表于 2025-3-29 11:00:52 | 只看該作者
46#
發(fā)表于 2025-3-29 13:40:05 | 只看該作者
Modelling Cognitive Development with Constructivist Neural Networksnomena. This point is empirically investigated with a constructivist neural network model of the acquisition of past tense/particip1e inflections. The model dynamically adapts its architecture to the leaming task by growing units and connections in a task-specific way during learning. In contrast to
47#
發(fā)表于 2025-3-29 19:36:41 | 只看該作者
48#
發(fā)表于 2025-3-29 22:44:30 | 只看該作者
49#
發(fā)表于 2025-3-30 02:14:21 | 只看該作者
50#
發(fā)表于 2025-3-30 04:15:33 | 只看該作者
Visual Crowding and Category-Specific Deficits: a Neural Network Modeltegories are distinct. In a series of experiments a Kohonen self organizing feature map was trained to recognise 2D digitised images. As a result, images of animals and musical instruments were represented within a shared set of processing units, which suggests that they are visually crowded categor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武川县| 清涧县| 兰溪市| 台前县| 公安县| 亳州市| 阿拉尔市| 察雅县| 遂平县| 晴隆县| 明光市| 九江市| 七台河市| 油尖旺区| 石泉县| 咸宁市| 安阳市| 六枝特区| 垣曲县| 遂溪县| 陕西省| 太保市| 桃源县| 武鸣县| 静安区| 漳州市| 扬州市| 东宁县| 容城县| 白水县| 左权县| 元氏县| 常德市| 沂南县| 舞钢市| 甘南县| 淮阳县| 繁峙县| 开封县| 乌鲁木齐县| 突泉县|