找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformally Invariant Metrics and Quasiconformal Mappings; Parisa Hariri,Riku Klén,Matti Vuorinen Book 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: Hoover
21#
發(fā)表于 2025-3-25 03:59:06 | 只看該作者
Generalized Hyperbolic GeometriesIn geometric function theory, invariance properties of metrics are important. In our work below, two notions of invariance are most important; invariance with respect to the group of M?bius transformations and invariance with respect to the group of similarity transformations.
22#
發(fā)表于 2025-3-25 09:13:32 | 只看該作者
Metrics and GeometryIn this chapter we shall consider some geometric issues related to the hyperbolic or quasihyperbolic metric. We begin with several comparison results for the quasihyperbolic metric. Here an important fact is that various metrics may be comparable in some but not in all domains.
23#
發(fā)表于 2025-3-25 12:54:10 | 只看該作者
The Modulus of a Curve FamilyFor the sake of easy reference and for the reader’s convenience we shall give in this chapter the basic properties of the modulus of a curve family. The proofs of several well-known results are omitted.
24#
發(fā)表于 2025-3-25 17:38:34 | 只看該作者
The Modulus as a Set FunctionLet . and . be compact disjoint non-empty sets in . and ..
25#
發(fā)表于 2025-3-25 22:15:39 | 只看該作者
The Capacity of a CondenserIn the present chapter we shall introduce, as a special case of curve families and their moduli, the notion of a condenser and its capacity, and we shall examine various properties of condensers.
26#
發(fā)表于 2025-3-26 00:17:53 | 只看該作者
Conformal InvariantsIn the preceding chapters we have studied some properties of the conformal invariant .(?Δ(., .;.)). In this chapter we shall introduce two other conformal invariants, the modulus metric . and its “dual” quantity ., where . is a domain in . and ., .?∈?..
27#
發(fā)表于 2025-3-26 07:46:51 | 只看該作者
Hyperbolic Type MetricsIn Chaps. . and . we studied the quasihyperbolic metric .. (.) and the distance ratio metric .. (.). These two metrics are generalizations of the hyperbolic metric (Chap. .) and in this chapter we introduce other such generalizations.
28#
發(fā)表于 2025-3-26 08:42:09 | 只看該作者
Comparison of MetricsWe start the comparison of metrics with those ones we have considered in the earlier chapters, namely the chordal metric ., (.), the hyperbolic metric ., (.), (.), the distance ratio metric ., (.) and the quasihyperbolic metric ., (.).
29#
發(fā)表于 2025-3-26 16:11:57 | 只看該作者
Local Convexity of BallsIn this chapter we study some geometric properties of metric balls for small radii. It is natural to expect that balls of small radii are like euclidean balls whereas the geometric structure of . strongly influences on the shape of balls for large radii.
30#
發(fā)表于 2025-3-26 17:34:25 | 只看該作者
Inclusion Results for BallsIn this chapter we consider inclusion of balls defined by several metrics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳信县| 广灵县| 武汉市| 南靖县| 内丘县| 泰和县| 三亚市| 周至县| 金坛市| 前郭尔| 会宁县| 威远县| 巩义市| 东海县| 永修县| 沭阳县| 和顺县| 迁安市| 呼和浩特市| 凌海市| 胶州市| 呼和浩特市| 惠水县| 府谷县| 红原县| 曲阜市| 扬中市| 富蕴县| 油尖旺区| 洛扎县| 梧州市| 石首市| 马鞍山市| 太仓市| 自治县| 甘南县| 山阳县| 西丰县| 玛多县| 开封县| 新乐市|