找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Vector Fields, Ricci Solitons and Related Topics; Ramesh Sharma,Sharief Deshmukh Book 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Coenzyme
21#
發(fā)表于 2025-3-25 05:47:44 | 只看該作者
Gro Kv?le,Charlotte Kiland,Dag Olaf TorjesenThis chapter introduces some important space-times of general relativity, then describes their kinematics, Einstein’s field equations and energy conditions. Subsequently, it provides characterizations and classifications of space-times (in general, Lorentzian manifolds) that admit conformal (including Killing and homothetic) vector fields.
22#
發(fā)表于 2025-3-25 10:15:31 | 只看該作者
23#
發(fā)表于 2025-3-25 14:52:13 | 只看該作者
24#
發(fā)表于 2025-3-25 17:59:27 | 只看該作者
Ronald Barnett Prof., Ph.D., D.Lit.This chapter starts with Yamabe problem, and then describes the Yamabe flow and Yamabe solitons. Finally, it provides characterizations of Yamabe almost solitons and also contact metrics as Yamabe solitons.
25#
發(fā)表于 2025-3-25 22:54:13 | 只看該作者
Lie Group and Lie Derivative,This chapter begins with a brief review of Lie groups and their Lie algebras. Subsequently, it introduces the notion of the Lie derivative, its properties and closes with formulas showing the deviation from commutativity of Lie and covariant derivatives.
26#
發(fā)表于 2025-3-26 03:10:23 | 只看該作者
Conformal Vector Fields,This chapter is devoted to conformal Killing vector fields, their integrability conditions, their zeros and Lichnerowicz conjecture on semi-Riemannian and CR manifolds.
27#
發(fā)表于 2025-3-26 07:08:47 | 只看該作者
28#
發(fā)表于 2025-3-26 08:53:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:31:14 | 只看該作者
Ricci Solitons,This chapter provides the basic theory of Ricci flow, Ricci solitons, their examples, important properties and known results.
30#
發(fā)表于 2025-3-26 18:16:26 | 只看該作者
Ricci Almost Solitons and Generalized Quasi-Einstein Manifolds,This chapter gives a coverage on Ricci almost soliton and its characterization and classification when it is compact, or contact metric. Next, it describes Generalized quasi-Einstein manifolds, its properties and classifications under various geometric conditions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 04:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳林县| 上蔡县| 常州市| 宜宾县| 溧阳市| 开封县| 周宁县| 丹阳市| 莎车县| 安义县| 开平市| 文昌市| 海兴县| 水城县| 丹阳市| 衡南县| 怀安县| 和顺县| 吉水县| 琼结县| 太仆寺旗| 南开区| 东平县| 布尔津县| 青阳县| 宜兰县| 旬阳县| 朝阳市| 玉环县| 淅川县| 新邵县| 龙海市| 石台县| 东丰县| 油尖旺区| 土默特右旗| 永寿县| 民乐县| 达日县| 福贡县| 芒康县|