找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Groups and Related Symmetries Physical Results and Mathematical Background; Proceedings of a Sym A. O. Barut,H. -D. Doebner Confe

[復(fù)制鏈接]
樓主: KEN
21#
發(fā)表于 2025-3-25 05:26:44 | 只看該作者
Transitional Justice in Practiceeted as a homogeneous space of SU(2). An expanding model of the universe is locally approximated by de Sitter spaces. Irreducible representations of the de Sitter group are explicitly constructed in ur theory. From these, Poincaré group representations in Minkowski space with well-defined rest mass
22#
發(fā)表于 2025-3-25 10:26:45 | 只看該作者
https://doi.org/10.1007/978-1-4419-6099-3nformal compactification M of the Minkowski space time. They are interachanged by the space and space-time inversions. It is suggested that Dirac spinor fields should be coupled to a gauge potential in order to get a nontrivial unitary representation of the conformal group in the space of solutions
23#
發(fā)表于 2025-3-25 15:43:57 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:23:28 | 只看該作者
From Heisenberg algebra to conformal dynamical group,The basic algebraic structures in the quantum theory of the electron, from Heisenberg algebra, kinematic algebra, Galilean, and Poincaré groups, to the internal and external conformal algebras are outlined. The universal role of the conformal dynamical group from electron, H-atom, hadrons, to periodic table is discussed.
26#
發(fā)表于 2025-3-26 04:03:35 | 只看該作者
Path integral realization of a dynamical group,A way to realize a dynamical group in terms of a path integral is illustrated by using the Poschl-Teller oscillator.
27#
發(fā)表于 2025-3-26 04:39:51 | 只看該作者
https://doi.org/10.1007/3-540-17163-0conformal field theory; path integral; quantum field; quantum field theory; supergravity
28#
發(fā)表于 2025-3-26 11:04:13 | 只看該作者
29#
發(fā)表于 2025-3-26 13:31:59 | 只看該作者
Conformal Groups and Related Symmetries Physical Results and Mathematical Background978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
30#
發(fā)表于 2025-3-26 17:30:39 | 只看該作者
0075-8450 Overview: 978-3-662-14482-4978-3-540-47219-3Series ISSN 0075-8450 Series E-ISSN 1616-6361
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扶余县| 平塘县| 陆川县| 克什克腾旗| 浠水县| 莱州市| 齐河县| 衡阳县| 紫金县| 沧州市| 湟源县| 西安市| 仙游县| 清河县| 醴陵市| 尼勒克县| 长阳| 吉安市| 顺平县| 双峰县| 兴安盟| 徐州市| 合川市| 黔南| 峨眉山市| 南京市| 修文县| 囊谦县| 左云县| 星子县| 姜堰市| 彭泽县| 长治市| 修文县| 天长市| 鹤峰县| 钦州市| 连平县| 辽阳县| 开江县| 杂多县|