找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conformal Geometry; A Publication of the Ravi S. Kulkarni,Ulrich Pinkall Book 1988 Springer Fachmedien Wiesbaden 1988 Geometrie.Lehrsatz.Ma

[復(fù)制鏈接]
樓主: CLIP
21#
發(fā)表于 2025-3-25 05:59:53 | 只看該作者
Conformal and Isometric Immersions of Conformally Flat Riemannian Manifolds into Spheres and Euclidetric obstructions for the existence of a conformai immersion into the N-dimensional sphere S. with N≦ 2n-2 (which are due to [Moore 2] and [Moore 3]) as local metric obstructions for the existence of an isometric immersion into S or Euclidean space E. . Then we apply these results to examples of co
22#
發(fā)表于 2025-3-25 07:37:57 | 只看該作者
https://doi.org/10.1007/978-1-4615-2744-2omains. This was confirmed by Gauss in his . This is esentially the existence of “isothermal co-ordinates” in the . . case. It is interesting to note that this study preceded and partially motivated Gauss’s later foundational work on the notion of curvature. For an account of this interesting history see Dombrowski [D], pp 127–130.
23#
發(fā)表于 2025-3-25 14:20:33 | 只看該作者
24#
發(fā)表于 2025-3-25 18:43:08 | 只看該作者
25#
發(fā)表于 2025-3-25 22:59:57 | 只看該作者
Transition-Metal Defects in Silicon as local metric obstructions for the existence of an isometric immersion into S or Euclidean space E. . Then we apply these results to examples of conformally flat manifolds as space forms, products of space forms with opposite curvature and warped products of S. and a nonspherical space form.
26#
發(fā)表于 2025-3-26 02:00:21 | 只看該作者
,Conformal Structures and M?bius Structures,omains. This was confirmed by Gauss in his . This is esentially the existence of “isothermal co-ordinates” in the . . case. It is interesting to note that this study preceded and partially motivated Gauss’s later foundational work on the notion of curvature. For an account of this interesting history see Dombrowski [D], pp 127–130.
27#
發(fā)表于 2025-3-26 07:16:45 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:24 | 只看該作者
Topics in the Theory of Quasiregular Mappings, have in general branching. The most interesting geometric features of the theory of quasiregular maps are in general of global character. While many relatively strong and precise results of this nature exist, the connections to differential geometry for example are not well understood and there is much left for further research.
29#
發(fā)表于 2025-3-26 13:39:00 | 只看該作者
Conformal and Isometric Immersions of Conformally Flat Riemannian Manifolds into Spheres and Euclid as local metric obstructions for the existence of an isometric immersion into S or Euclidean space E. . Then we apply these results to examples of conformally flat manifolds as space forms, products of space forms with opposite curvature and warped products of S. and a nonspherical space form.
30#
發(fā)表于 2025-3-26 17:32:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 05:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乾安县| 陈巴尔虎旗| 铜山县| 德兴市| 万州区| 修水县| 长宁区| 贺兰县| 临武县| 安乡县| 修文县| 调兵山市| 德化县| 永昌县| 东乌珠穆沁旗| 若尔盖县| 高密市| 罗江县| 宁海县| 湖南省| 娱乐| 剑河县| 牙克石市| 澄江县| 牙克石市| 岱山县| 扶沟县| 正镶白旗| 宿松县| 舟山市| 崇仁县| 西宁市| 桓台县| 顺昌县| 乡宁县| 襄汾县| 图们市| 东至县| 丰都县| 日喀则市| 阿克苏市|