找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Conditionally Specified Distributions; Barry C. Arnold,Enrique Castillo,José-Mariá Sarabi Conference proceedings 1992 Springer-Verlag Berl

[復(fù)制鏈接]
樓主: finesse
41#
發(fā)表于 2025-3-28 17:06:51 | 只看該作者
42#
發(fā)表于 2025-3-28 21:52:31 | 只看該作者
43#
發(fā)表于 2025-3-29 01:43:24 | 只看該作者
Distributions with normal conditionals,l conditional densities are univariate normal. In addition, the regression functions are linear and the conditioned variances do not depend on the value of the conditioned variable. Moreover the contours of the joint density are ellipses. Individually none of the above properties is restrictive enou
44#
發(fā)表于 2025-3-29 03:46:56 | 只看該作者
Conditionals in Exponential Families,on in Chapter 2, it is natural to seek out more general results regarding distributions whose conditionals are posited to be members of quite general exponential families. Indeed the discussion leading up to Theorem 2.4, suggests that things should work well when conditionals are from exponential fa
45#
發(fā)表于 2025-3-29 08:11:57 | 只看該作者
Other conditionally specified families,els not fitting into the exponential family paradigm. No general theorem analogous to Theorem 4.2.1 is available and results are obtained on a case by case basis. The key tools are, of course, Theorems 2.3 and 2.4 which permit us to solve the functional equations characterizing many conditionally sp
46#
發(fā)表于 2025-3-29 13:05:51 | 只看該作者
Characterizations involving conditional moments, families. Two kinds of surprising results have been encountered. On the one hand, the class of conditionally specified joint densities might be surprisingly constrained. For example, exponential conditionals models turn out to be always negatively correlated. In some sense, then, specifying the for
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 08:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄汾县| 洮南市| 烟台市| 涪陵区| 集贤县| 岫岩| 孝义市| 沙洋县| 咸阳市| 阿勒泰市| 华安县| 黄大仙区| 句容市| 和政县| 阿拉尔市| 宜都市| 鄂托克前旗| 马公市| 昆山市| 海宁市| 理塘县| 博罗县| 佳木斯市| 乌兰浩特市| 文山县| 枣阳市| 玉门市| 云南省| 晋中市| 丰城市| 大埔县| 南召县| 越西县| 时尚| 静海县| 故城县| 海门市| 满洲里市| 上林县| 桂平市| 琼结县|