找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Concepts and Results in Chaotic Dynamics: A Short Course; Pierre Collet,Jean-Pierre Eckmann Textbook 2006 Springer-Verlag Berlin Heidelber

[復(fù)制鏈接]
樓主: 嬉戲
21#
發(fā)表于 2025-3-25 05:55:39 | 只看該作者
22#
發(fā)表于 2025-3-25 11:28:43 | 只看該作者
Experimental Aspects,imal methods to work with not so abundant data, nonlinear fits to discover the evolution equations, and the like. There is a large literature on this subject; see e.g. (Grassberger, Schreiber, and Schaffrath 1991) and references therein.
23#
發(fā)表于 2025-3-25 12:57:43 | 只看該作者
Outline of the CMEA Game-theoretic Designmulated over long enough time, will in fact tell us many details about the orbit. In physical applications, one often can observe only one orbit and the information one obtains is considered to be typical of the whole system. We discuss this in more detail in Chap. 9.
24#
發(fā)表于 2025-3-25 16:39:35 | 只看該作者
25#
發(fā)表于 2025-3-25 21:54:28 | 只看該作者
Textbook 2006cal systems. The theory of chaotic dynamics has a deep impact on our understanding of - ture, and we sketch here our view on this question. The strength of this theory comes from its generality, in that it is not limited to a particular equation or scienti?c - main. It should be viewed as a conceptu
26#
發(fā)表于 2025-3-26 01:53:39 | 只看該作者
27#
發(fā)表于 2025-3-26 05:35:05 | 只看該作者
Controllability of multidimensional systems,imal methods to work with not so abundant data, nonlinear fits to discover the evolution equations, and the like. There is a large literature on this subject; see e.g. (Grassberger, Schreiber, and Schaffrath 1991) and references therein.
28#
發(fā)表于 2025-3-26 10:24:54 | 只看該作者
A Basic Problem,s a pendulum with a magnet at the end, which oscillates above three symmetrically arranged fixed magnets, which attract the oscillating magnet, as shown in Fig. 1.1. When one holds the magnet slightly eccentrically and let it go, it will dance around the three magnets, and finally settle at one of t
29#
發(fā)表于 2025-3-26 13:11:04 | 只看該作者
30#
發(fā)表于 2025-3-26 19:34:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 02:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大厂| 宜州市| 太仓市| 三亚市| 东乌珠穆沁旗| 万年县| 炎陵县| 淮北市| 磴口县| 正宁县| 井研县| 栾川县| 黄石市| 锡林郭勒盟| 家居| 永仁县| 沙河市| 安泽县| 吉木萨尔县| 新密市| 台中县| 资阳市| 丘北县| 新巴尔虎左旗| 庐江县| 平昌县| 万荣县| 武胜县| 德惠市| 丰都县| 织金县| 黔西县| 高平市| 和林格尔县| 崇左市| 南皮县| 黄浦区| 灵武市| 克山县| 巴里| 扬中市|