找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Concentration and Gaussian Approximation for Randomized Sums; Sergey Bobkov,Gennadiy Chistyakov,Friedrich G?tze Book 2023 The Editor(s) (i

[復制鏈接]
樓主: Lactase
31#
發(fā)表于 2025-3-26 21:28:19 | 只看該作者
32#
發(fā)表于 2025-3-27 04:41:46 | 只看該作者
Characteristic Functions of Weighted SumsIn order to study deviations of the distribution functions . from the typical distribution . by means of the Kolmogorov distance, Berry–Esseen-type inequalities, which we discussed in Chapter 3, will be used. To this end we need to focus first on the behavior of characteristic functions of ..
33#
發(fā)表于 2025-3-27 08:54:55 | 只看該作者
Fluctuations of DistributionsIn order to deal with the main Problem 12.1.2, we start with the Kantorovich distance for bounding possible fluctuations of . around . on average.
34#
發(fā)表于 2025-3-27 11:57:55 | 只看該作者
35#
發(fā)表于 2025-3-27 15:28:26 | 只看該作者
36#
發(fā)表于 2025-3-27 18:57:51 | 只看該作者
Slow coherency and weak connections,lity distributions. In this chapter, these functionals are discussed for product measures (in which case one can also refine upper bounds on “small ball” probabilities), for joint distributions of pairwise independent random variables, and for coordinate-symmetric distributions. We also discuss the
37#
發(fā)表于 2025-3-27 23:48:13 | 只看該作者
Slow coherency and weak connections,ctor. However, information on various bounds on characteristic functions and their deviations from the characteristic function of another law on the real line will be needed for a different purpose – to study the Kolmogorov and Lévy distances between the corresponding distribution functions. In this
38#
發(fā)表于 2025-3-28 04:46:42 | 只看該作者
Slow coherency and weak connections,istance), and also discuss possible improved rates of approximation when replacing the normal law by corresponding Edgeworth corrections. The first section deals with moment based quantities for single random variables
39#
發(fā)表于 2025-3-28 09:41:57 | 只看該作者
40#
發(fā)表于 2025-3-28 11:45:14 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 06:08
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
夹江县| 玉田县| 修水县| 巴南区| 宁安市| 无棣县| 托克逊县| 板桥市| 临邑县| 上饶市| 巴马| 贵定县| 景东| 峡江县| 盘锦市| 灵台县| 博兴县| 仁怀市| 恩平市| 信宜市| 廉江市| 重庆市| 马尔康县| 富源县| 建始县| 通城县| 卓资县| 易门县| 灵川县| 霍州市| 雅安市| 静安区| 邢台县| 临湘市| 托克逊县| 吉林市| 东辽县| 石景山区| 上蔡县| 远安县| 南开区|