找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing the Continuous Discretely; Integer-point Enumer Matthias Beck,Sinai Robins Textbook 20071st edition Springer-Verlag New York 2007

[復(fù)制鏈接]
樓主: emanate
21#
發(fā)表于 2025-3-25 06:29:31 | 只看該作者
Function STITLE function WTITLE,the proportion of space that the cone к occupies. In slightly different words, if we pick a point х ? ?. “at random,” then the probability that х ? к is precisely the solid angle at the apex of к. Yet another view of solid angles is that they are in fact volumes of spherical polytopes: the region of
22#
發(fā)表于 2025-3-25 08:22:31 | 只看該作者
23#
發(fā)表于 2025-3-25 14:48:33 | 只看該作者
24#
發(fā)表于 2025-3-25 17:49:05 | 只看該作者
25#
發(fā)表于 2025-3-25 21:33:02 | 只看該作者
26#
發(fā)表于 2025-3-26 00:16:13 | 只看該作者
https://doi.org/10.1007/3-540-15202-4Fourier theory using rational functions and their partial fraction decomposition. We then define the Fourier transform and the convolution of finite Fourier series, and show how one can use these ideas to prove identities on trigonometric functions, as well as find connections to the classical Dedekind sums.
27#
發(fā)表于 2025-3-26 06:24:55 | 只看該作者
Function STITLE function WTITLE,is precisely the solid angle at the apex of к. Yet another view of solid angles is that they are in fact volumes of spherical polytopes: the region of intersection of a cone with a sphere. There is a theory here that parallels the Ehrhart theory of Chapters 3 and 4, but which has some genuinely new ideas.
28#
發(fā)表于 2025-3-26 11:02:26 | 只看該作者
29#
發(fā)表于 2025-3-26 15:11:55 | 只看該作者
Dedekind Sums, the Building Blocks of Lattice-point Enumerationongoing effort to extend these ideas to higher dimensions, but there is much room for improvement. In this chapter we focus on the computational-complexity issues that arise when we try to compute Dedekind sums explicitely.
30#
發(fā)表于 2025-3-26 19:10:14 | 只看該作者
Counting Lattice Points in Polytopes:The Ehrhart TheoryGiven the profusion of examples that gave rise to the polynomial behavior of the integer-point counting function .(.) for special polytopes ., we now ask whether there is a general structure theorem. As the ideas unfold, the reader is invited to look back at Chapters 1 and 2 as appetizers and indeed as special cases of the theorems developed below.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 16:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓝山县| 正蓝旗| 东港市| 香河县| 信宜市| 白山市| 莆田市| 枣庄市| 麻江县| 孟津县| 左贡县| 兴业县| 姜堰市| 琼结县| 深州市| 通许县| 新化县| 天津市| 青阳县| 雅江县| 寿阳县| 安顺市| 容城县| 三明市| 林州市| 长顺县| 黄骅市| 黄浦区| 太康县| 呈贡县| 乌恰县| 定南县| 湘潭县| 岑溪市| 应城市| 延长县| 名山县| 丹江口市| 绵竹市| 普定县| 龙南县|