找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computing and Combinatorics; 19th International C Ding-Zhu Du,Guochuan Zhang Conference proceedings 2013 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: Washington
31#
發(fā)表于 2025-3-26 22:47:17 | 只看該作者
Conference proceedings 2013na, in June 2013. The 56 revised full papers presented were carefully reviewed and selected from 120 submissions. There was a co-organized workshop on discrete algorithms of which 8 short papers were accepted and a workshop on computational social networks where 12 papers out of 25 submissions were accepted.
32#
發(fā)表于 2025-3-27 02:51:02 | 只看該作者
Ding-Zhu Du,Guochuan ZhangUp-to-date results.Fast track conference proceedings.State-of-the-art report
33#
發(fā)表于 2025-3-27 07:53:53 | 只看該作者
34#
發(fā)表于 2025-3-27 10:15:12 | 只看該作者
35#
發(fā)表于 2025-3-27 15:39:54 | 只看該作者
978-3-642-38767-8Springer-Verlag Berlin Heidelberg 2013
36#
發(fā)表于 2025-3-27 20:12:37 | 只看該作者
37#
發(fā)表于 2025-3-28 01:19:03 | 只看該作者
https://doi.org/10.1007/BFb0008699e famous secretary problem asks to identify a stopping rule that maximizes the probability of selecting the maximum element in a sequence presented in uniformly random order. In a similar vein, the prophet inequality of Krengel, Sucheston, and Garling establishes the existence of an online algorithm
38#
發(fā)表于 2025-3-28 03:51:18 | 只看該作者
https://doi.org/10.1007/BFb0008699with anonymous bidders with respect to the best fixed-price scheme. Previous works show that the optimal solution for this problem is in the range [1.6595,2]. We give a new lower bound of 1.68 and design an .(..) algorithm for computing upper bounds as a function of the number of bidders .. Our algo
39#
發(fā)表于 2025-3-28 10:07:00 | 只看該作者
40#
發(fā)表于 2025-3-28 12:48:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 盐源县| 宣威市| 横山县| 正宁县| 大兴区| 赤水市| 南陵县| 平潭县| 淅川县| 鄱阳县| 疏勒县| 武冈市| 三河市| 南岸区| 搜索| SHOW| 罗田县| 宁河县| 郑州市| 错那县| 东阳市| 从江县| 方正县| 博白县| 沧州市| 沈丘县| 定边县| 榆中县| 大城县| 石景山区| 阳曲县| 恩施市| 从江县| 仪陇县| 麟游县| 门源| 阿城市| 余干县| 顺义区| 九龙县|