找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computerized Systems for Diagnosis and Treatment of COVID-19; Joao Alexandre Lobo Marques,Simon James Fong Book 2023 The Editor(s) (if app

[復制鏈接]
樓主: Constrict
41#
發(fā)表于 2025-3-28 15:02:05 | 只看該作者
42#
發(fā)表于 2025-3-28 20:18:07 | 只看該作者
https://doi.org/10.1007/978-981-33-4952-0ws of 1 second segments in 6 ways of windowing signal analysis crops were evaluated employing statistical analysis. Three categories of outcomes are considered for the patient status: Low, Moderate, and Severe, and four combinations for classification scenarios are tested: ?(., ., .) and 1 Multi-cla
43#
發(fā)表于 2025-3-29 01:58:14 | 只看該作者
44#
發(fā)表于 2025-3-29 05:15:27 | 只看該作者
Technology Developments to Face the COVID-19 Pandemic: Advances, Challenges, and Trends,systems based on Artificial Intelligence are in fact ready to effectively help on clinical processes, from the perspective of the model proposed by NASA, Technology Readiness Levels (TRL). Finally, two trends are presented with increased necessity of computerized systems to deal with the Long Covid
45#
發(fā)表于 2025-3-29 08:31:49 | 只看該作者
Lung Segmentation of Chest X-Rays Using Unet Convolutional Networks,oise and misinterpretation caused by other structures eventually present in the images. This chapter presents an AI-based system for lung segmentation in X-ray images using a U-net CNN model. The system’s performance was evaluated using metrics such as cross-entropy, dice coefficient, and Mean IoU o
46#
發(fā)表于 2025-3-29 12:21:32 | 只看該作者
47#
發(fā)表于 2025-3-29 15:57:06 | 只看該作者
X-Ray Machine Learning Classification with VGG-16 for Feature Extraction,r presented the best performance metrics for Covid-19 classification, achieving 90% accuracy, 97.5% of Specificity, 82.5% of Sensitivity, 89.6% of Geometric mean, and 90% for the AUC metric. On the other hand, the Nearest Centroid (NC) classifier presented poor sensitivity and geometric mean results
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 08:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
马公市| 乌审旗| 大城县| 越西县| 望谟县| 龙岩市| 德阳市| 顺昌县| 宁德市| 中西区| 武隆县| 闸北区| 遵化市| 桓仁| 思南县| 兰西县| 呼图壁县| 莱西市| 太和县| 靖远县| 道孚县| 内黄县| 东台市| 湟中县| 龙门县| 房产| 柳州市| 延吉市| 台东县| 万盛区| 河北省| 安陆市| 元江| 三门县| 高雄县| 都兰县| 卢湾区| 乐山市| 肃南| 金昌市| 柳江县|