找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer-Aided Analysis of Rigid and Flexible Mechanical Systems; Manuel F. O. Seabra Pereira,Jorge A. C. Ambrósio Book 1994 Springer Scie

[復(fù)制鏈接]
樓主: 底的根除
31#
發(fā)表于 2025-3-27 01:01:32 | 只看該作者
https://doi.org/10.1007/978-94-011-1166-9Analysis; Halle; Hiehle; construction; design; kinematics; mechanics; modeling; robot; robotics; simulation
32#
發(fā)表于 2025-3-27 02:15:47 | 只看該作者
33#
發(fā)表于 2025-3-27 08:23:47 | 只看該作者
Computational Challenges in Mechanical Systems Simulationdescribe progress which has been made in understanding the formulation of the equations of motion from the viewpoint of numerical stability, outline some of the difficulties which must be resolved for efficient and reliable numerical methods in real-time simulation of mechanical systems, and propose some solutions.
34#
發(fā)表于 2025-3-27 10:52:40 | 只看該作者
The Negotiation of the Single European Act,By working with a symbol manipulation computer program created specifically for this purpose, a dynamicist can use a personal computer to analyze motions of mechanical systems in a highly efficient manner. The theory underlying the computer program is discussed, and illustrative examples are presented.
35#
發(fā)表于 2025-3-27 13:41:08 | 只看該作者
36#
發(fā)表于 2025-3-27 18:22:26 | 只看該作者
37#
發(fā)表于 2025-3-27 23:08:31 | 只看該作者
Constrained Multibody Dynamicss allow explicit elimination of all spatial and dependent joint coordinates yielding a minimal system of highly coupled differential equations. A symbolic recursive algorithm that simultaneously decouples the reduced equations of motion as they are generated, was developed to maximize algorithm para
38#
發(fā)表于 2025-3-28 04:43:53 | 只看該作者
Construction of the Equations of Motion for Multibody Dynamics Using Point and Joint Coordinatesions. Then, following a second velocity transformation, these equations are converted to a minimal set of differential equations. The combination of point-and joint-coordinate formulations provides some interesting features.
39#
發(fā)表于 2025-3-28 08:47:14 | 只看該作者
40#
發(fā)表于 2025-3-28 13:42:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临夏市| 原平市| 龙里县| 神农架林区| 郧西县| 张家口市| 滦南县| 公主岭市| 灵武市| 沧源| 鄂托克前旗| 沈阳市| 股票| 三江| 攀枝花市| 尚志市| 许昌市| 北碚区| 揭东县| 台中市| 吉安县| 应城市| 谷城县| 竹溪县| 常山县| 嵊州市| 普安县| 思茅市| 高雄县| 于田县| 阜康市| 云龙县| 全南县| 娄烦县| 顺昌县| 曲沃县| 探索| 任丘市| 宁海县| 布拖县| 含山县|