找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision – ECCV 2022 Workshops; Tel Aviv, Israel, Oc Leonid Karlinsky,Tomer Michaeli,Ko Nishino Conference proceedings 2023 The Edit

[復制鏈接]
樓主: INFER
41#
發(fā)表于 2025-3-28 18:32:54 | 只看該作者
MaRF: Representing Mars as?Neural Radiance Fieldsparse set of images. To speed up the learning process, we replaced the sparse set of rover images with their neural graphics primitives (NGPs), a set of vectors of fixed length that are learned to preserve the information of the original images in a significantly smaller size. In the experimental se
42#
發(fā)表于 2025-3-28 20:04:16 | 只看該作者
43#
發(fā)表于 2025-3-29 00:38:04 | 只看該作者
Mixed-Domain Training Improves Multi-mission Terrain Segmentatione to deploy across different Martian rover missions for terrain navigation, by utilizing a mixed-domain training set that ensures feature diversity. Evaluation results of using average pixel accuracy show that a semi-supervised mixed-domain approach improves accuracy compared to single domain traini
44#
發(fā)表于 2025-3-29 06:00:26 | 只看該作者
CubeSat-CDT: A Cross-Domain Dataset for?6-DoF Trajectory Estimation of?a?Symmetric Spacecraftted to the space of camera poses while preserving temporal information. Our results highlight the importance of addressing the domain gap problem to propose reliable solutions for close-range autonomous relative navigation between spacecrafts. Since the nature of the data used during training impact
45#
發(fā)表于 2025-3-29 10:28:44 | 只看該作者
Data Lifecycle Management in?Evolving Input Distributions for?Learning-based Aerospace Applicationsmation gain from an input using Bayesian uncertainty quantification and choosing a subset that maximizes collective information gain using concepts from batch active learning. We show that our algorithm outperforms others on the benchmark, e.g., achieves comparable performance to an algorithm that l
46#
發(fā)表于 2025-3-29 12:51:40 | 只看該作者
47#
發(fā)表于 2025-3-29 18:14:05 | 只看該作者
48#
發(fā)表于 2025-3-29 20:46:25 | 只看該作者
49#
發(fā)表于 2025-3-30 00:00:47 | 只看該作者
On-the-Go Reflectance Transformation Imaging with?Ordinary Smartphonesunt of data, we propose a neural relighting model that reconstructs object appearance for arbitrary light directions from extremely compact reflectance distribution data compressed via Principal Components Analysis (PCA). Experiments shows that the proposed technique can be easily performed on the f
50#
發(fā)表于 2025-3-30 04:44:19 | 只看該作者
Conference proceedings 2023ng for Next-Generation Industry-LevelAutonomous Driving; W11 - ISIC Skin Image Analysis; W12 - Cross-Modal Human-Robot Interaction; W13 - Text in Everything; W14 - BioImage Computing; W15 - Visual Object-Oriented Learning Meets Interaction: Discovery, Representations, and Applications; W16 - AI for
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
资阳市| 和龙市| 池州市| 马鞍山市| 晋城| 泸西县| 淳安县| 山阳县| 河南省| 南靖县| 岑巩县| 西丰县| 三亚市| 大名县| 宜丰县| 万山特区| 龙胜| 乌兰浩特市| 乐东| 台中市| 云和县| 新津县| 北京市| 凭祥市| 西畴县| 金塔县| 金平| 垣曲县| 海伦市| 贡嘎县| 拉孜县| 久治县| 漾濞| 福海县| 古交市| 巴林左旗| 丰县| 佛教| 霍林郭勒市| 新乡市| 石棉县|